Abstract:
An aft pivot assembly includes a height adjustment mechanism integrated into a device for mounting a payload, to enable release of the payload. The aft pivot assembly releasably secures an aft portion of the payload, such a pod, store, ordinance, or fuel tank. The aft pivot assembly includes a shaft operable with the mount device and a release component, the shaft being rotatable about multiple shaft axes relative to the mount device so as to either minimize or eliminate carriage loads about the aft portion, while reacting jettison loads during a jettison event or phase. The rotation of the shaft about its shaft axes can further be limited via a limit device. As the payload transitions from a carriage phase to a jettison phase, the shaft moves in multiple degrees of freedom and in multiple axes relative to the mount device.
Abstract:
A fused silica body comprising a layer of vitreous silica adjacent at least a portion of an inner surface is described in embodiments herein. In other embodiments, a method of making a fused silica body with a layer of vitreous silica adjacent at least a portion of an inner surface is described herein, comprising heating at least a portion of the inner surface to the point of vitrification. In certain embodiments, the method involves passing a linear local heat source over the inner surface in a particular manner, such as a helical fashion transverse to the linear shape, and may involve creating on the inner surface of the body overlapping swaths of temporarily melted silica material.
Abstract:
An aft pivot assembly includes a height adjustment mechanism integrated into a device for mounting a payload, to enable release of the payload. The aft pivot assembly releasably secures an aft portion of the payload, such a pod, store, ordinance, or fuel tank. The aft pivot assembly includes a shaft operable with the mount device and a release component, the shaft being rotatable about multiple shaft axes relative to the mount device so as to either minimize or eliminate carriage loads about the aft portion, while reacting jettison loads during a jettison event or phase. The rotation of the shaft about its shaft axes can further be limited via a limit device. As the payload transitions from a carriage phase to a jettison phase, the shaft moves in multiple degrees of freedom and in multiple axes relative to the mount device.
Abstract:
A fused silica body comprising a layer of vitreous silica adjacent at least a portion of an inner surface is described in embodiments herein. In other embodiments, a method of making a fused silica body with a layer of vitreous silica adjacent at least a portion of an inner surface is described herein, comprising heating at least a portion of the inner surface to the point of vitrification. In certain embodiments, the method involves passing a linear local heat source over the inner surface in a particular manner, such as a helical fashion transverse to the linear shape, and may involve creating on the inner surface of the body overlapping swaths of temporarily melted silica material.