Abstract:
A method of controlling a liquid movement system, such as a pool system. The method includes receiving a maximum time that an auxiliary load is to operate, receiving a minimum pump speed of a pump system that pumps a liquid through the auxiliary load, monitoring the time that an auxiliary load has been in operation, monitoring the pump speed of a pump system that pumps a liquid through the auxiliary load, and deactivating the auxiliary load if the maximum time or minimum pump speed has been met. Also disclosed are a pool system and a controller for controlling the pool system.
Abstract:
A system for liquid cooling for a motor for a pump is provided. The system includes a motor configured to be coupled to a pump to move a liquid from an inlet side of the pump associated with a first pressure to an outlet side of the pump associated with a second pressure that is greater than the first pressure. The system additionally includes a heat transfer tube adjacent to at least a portion of the motor. The heat transfer tube is configured to receive at least a portion of the liquid from the outlet side of the pump and transfer heat away from said motor using the liquid.
Abstract:
A method of controlling a liquid movement system, such as a pool system. The method includes receiving a maximum time that an auxiliary load is to operate, receiving a minimum pump speed of a pump system that pumps a liquid through the auxiliary load, monitoring the time that an auxiliary load has been in operation, monitoring the pump speed of a pump system that pumps a liquid through the auxiliary load, and deactivating the auxiliary load if the maximum time or minimum pump speed has been met. Also disclosed are a pool system and a controller for controlling the pool system.
Abstract:
A motor assembly configured to receive an external alternating voltage. The motor assembly includes a motor and a circuit assembly. The motor includes a stator and a rotor rotatable about a longitudinal axis. The circuit assembly includes a state detector and a control unit. The state detector is operable to detect whether an external device is receiving the external alternating voltage The control unit is operable to control the motor based on whether the external device is receiving the external alternating voltage.
Abstract:
A pump system including a motor, a fluid pump powered by the motor, a user-interface, and a controller. The controller including a user-interface input electrically coupled to the user-interface, a serial communication input, a digital input having a plurality of digital input pins sharing a common ground pin, a processor, and a computer readable memory. The computer readable memory storing instructions that, when executed by the processor, cause the controller to receive an operating signal simultaneously from the serial communication input and the digital input, and control the motor based on one of the operating signal from the serial communication input and the operating signal from the digital input.
Abstract:
A motor assembly configured to receive an external alternating voltage. The motor assembly includes a motor and a circuit assembly. The motor includes a stator and a rotor rotatable about a longitudinal axis. The circuit assembly includes a state detector and a control unit. The state detector is operable to detect whether an external device is receiving the external alternating voltage The control unit is operable to control the motor based on whether the external device is receiving the external alternating voltage.
Abstract:
A motor assembly coupled to an external alternating voltage input, the motor assembly comprising a motor including a stator and a rotor rotatable about a longitudinal axis. The motor assembly further includes a circuit assembly, the circuit assembly having a state detector operable to detect the state of the external alternating voltage input and a control unit operable to control the motor based on the state of the external alternating voltage input detected by the state detector. The motor assembly also includes a housing substantially encasing the motor, and the circuit assembly.
Abstract:
An adjustment module configured to be coupled to an electric motor controller is provided. The adjustment module includes at least one potentiometer and a communication interface coupled to the input device. The potentiometer receives a control signal from a user. The communication interface is configured to communicate the control signal to the electric motor controller.
Abstract:
Methods and systems of controlling the operation of a pump according to a pump operation schedule are described. In one constructions, a pump controller enters a programming mode and monitors a number of inputs received through a user interface while in the programming mode. The programming mode is then exited and a delay time is defined equal to one hour for each input received through the user interface while in the programming mode. A stored pump operation schedule is accessed and operation of the pump is initiated according to the pump operation schedule after a period of time equal to the delay time has elapsed since exiting the programming mode. Operation of the pump is again initiated according to the accessed pump operation schedule every twenty-four hours since the pump operation schedule was last initiated.
Abstract:
A motor assembly coupled to an external alternating voltage input, the motor assembly comprising a motor including a stator and a rotor rotatable about a longitudinal axis. The motor assembly further includes a circuit assembly, the circuit assembly having a state detector operable to detect the state of the external alternating voltage input and a control unit operable to control the motor based on the state of the external alternating voltage input detected by the state detector. The motor assembly also includes a housing substantially encasing the motor, and the circuit assembly.