Abstract:
An electrical power supply system includes a battery of cells, the battery including an ammeter configured to measure battery current flowing through the battery, and at least one voltage sensor configured to measure voltage at terminals of a cell. An electronic control unit is configured to deliver a maximum permissible electrical power setpoint. The control unit is configured to calculate a maximum permissible electrical power associated with a cell by taking the minimum of at least two values, including a first electrical power and a second electrical power.
Abstract:
The invention relates to a system for managing the charging of at least one cell of a storage battery, comprising: two separate means for comparing the voltage across the terminals of said cell with a threshold voltage; and two separate controlling means adapted to control two actuators, respectively, in order to interrupt the charging of the storage battery when said first or second comparing means detects that the voltage across the terminals of said cell exceeds the threshold voltage. One of the actuators is formed by a charger that is connected to said storage battery in order to recharge said cells.
Abstract:
The invention relates to a system for managing the charging of at least one cell of a storage battery, comprising: two separate means for comparing the voltage across the terminals of said cell with a threshold voltage; and two separate controlling means adapted to control two actuators, respectively, in order to interrupt the charging of the storage battery when said first or second comparing means detects that the voltage across the terminals of said cell exceeds the threshold voltage. One of the actuators is formed by a charger that is connected to said storage battery in order to recharge said cells.
Abstract:
A method for determining, by sampling at a given frequency, a maximum voltage value of a load signal of at least one motor vehicle battery cell, the load signal to be sampled being rectified and sinusoidal and having a frequency that is higher than the sampling frequency, the method including: determining a sampling frequency, a measurement time at the sampling frequency, and a related inaccuracy, measuring a load voltage with the predetermined sampling frequency and with the predetermined measurement time, and determining a maximum load voltage.
Abstract:
A method for determining, by sampling at a given frequency, a maximum voltage value of a load signal of at least one motor vehicle battery cell, the load signal to be sampled being rectified and sinusoidal and having a frequency that is higher than the sampling frequency, the method including: determining a sampling frequency, a measurement time at the sampling frequency, and a related inaccuracy, measuring a load voltage with the predetermined sampling frequency and with the predetermined measurement time, and determining a maximum load voltage.
Abstract:
An electrical power supply system includes a battery of cells, the battery including an ammeter configured to measure battery current flowing through the battery, and at least one voltage sensor configured to measure voltage at terminals of a cell. An electronic control unit is configured to deliver a maximum permissible electrical power setpoint. The control unit is configured to calculate a maximum permissible electrical power associated with a cell by taking the minimum of at least two values, including a first electrical power and a second electrical power.