Abstract:
A touch system using processor to configure touch detection architecture, including: a sensor unit having a plurality of sensors; a connection unit for determining a sensors joined configuration of the plurality of sensors according to at least one connection control signal; a touch scan unit for coupling at least one touch signal to the connection unit according to at least one scan configuration signal; a touch detection unit for outputting the touch signal and deriving touch information from a parameter of the touch signal according to at least one operation mode configuration signal; and a processor unit for outputting the at least one connection control signal, the scan configuration signal, and the operation mode configuration signal according to a content of a control table, and receiving the touch information.
Abstract:
A touch display device having auxiliary capacitor, including: at least one touch operation area, each having two opposing substrates, between which are a first electrode, a first conductive line coupled with the first electrode, a second electrode, a second conductive line coupled with the second electrode, and a display layer neighboring both the first electrode and the second electrode; a display driver unit for outputting at least one display driving voltage; a touch detection unit having at least one touch signal sensing port; at least one auxiliary capacitor, each coupled with one of the at least one touch operation area; and at least one switch element; wherein, each of the at least one display driving voltage is coupled to one of the at least one touch operation area via one of the at least one switch element.
Abstract:
A touch display driving circuit capable of responding to CPU commands, including: a first interface for receiving pixel data and touch configuration data; a second interface for coupling with a touch display; and a control unit, which drives the touch display via the second interface to show an image according to the pixel data, and executes a touch detection procedure on the touch display via the second interface, wherein the touch detection procedure is determined according to the touch configuration data.
Abstract:
An intelligent sensing touch display device capable of being responsive to an application program to selectively perform a touch detection procedure on a first electrode group and/or on an active array unit, where a controller is coupled with a touch and display driving unit, the controller has a wireless communication port and/or a switching circuit for controlling at least one external device, and is used for performing a switching control procedure, the switching control procedure including steps of: receiving information of at least one touched button icon provided by the touch and display driving unit; generating at least one switching command according to the information of at least one touched button icon; and transmitting the at least one switching command via the wireless communication port and/or the switching circuit to control the at least one external device.
Abstract:
An OLED touch device including at least one OLED and a controller, each of the at least one OLED having: a first substrate; a first electrode located on the first substrate; an organic material structure layer located on the first electrode; a second electrode located on the organic material structure layer; and a second substrate located on the second electrode; wherein, the control unit is used to apply a combined voltage source across the first electrode and the second electrode of at least one of the at least one OLED to provide a light emitting function and/or a touch detection function, wherein the combined voltage source has a DC voltage component and an AC voltage component.
Abstract:
A touch display having in-plane-switching liquid crystal structure, comprising a pixel cell and a multiplexer circuit, wherein the multiplexer circuit is used to couple a source driver unit with the pixel cell to provide an in-plane switching display function during a display period, and couple a touch control unit with the pixel cell to provide a touch detection function during a touch detection period.
Abstract:
A software-defined sensing system capable of responding to CPU commands, including: at least one input operation sensing module; at least one driving unit for driving the at least one input operation sensing module via at least one first interface; at least one control unit for receiving at least one sensors-configuration command via at least one second interface to control the at least one driving unit; at least one central processing unit, having at least one first function library to provide at least one sensors-configuration setting function for determining the sensors-configuration command; and at least one application program having at least one sensors-configuration function call instruction for generating the sensors-configuration command to provide at least one input sensing function.
Abstract:
An intelligent touch sensing device, including: a first electrode group having a first plurality of first electrodes; a second electrode group having a second plurality of second electrodes, each of the second electrodes being coupled with at least one active switch and the second plurality being larger than the first plurality; and a touch detection unit coupled with the first electrode group and with the second electrode group for performing a first touch detection procedure or performing the first detection procedure and then a second touch detection procedure as optionally required by an application program, the first touch detection procedure being acting on the first electrode group, and the second touch detection procedure being acting on at least one region of the second electrode group, wherein the at least one region is determined according to a detection result of the first touch detection procedure.
Abstract:
An electronic paper touch device including: a first substrate; a first electrode layer located on the first substrate; an electronic paper display layer located on the first electrode layer; a transparent electrode layer located on the electronic paper display layer and having plural transparent electrodes; a second substrate located on the transparent electrode layer; and a control unit having a touch mode and an electronic paper mode, wherein, when the control unit is in the touch mode, the control unit will couple a touch detection unit with the first electrode layer and with the transparent electrode layer to perform a capacitive touch detection procedure.
Abstract:
An intelligent sensing touch display device capable of being responsive to an application program to selectively perform a touch detection procedure on a first electrode group and/or on an active array unit, where a controller has a memory for storing background image data, and data of at least one object image, and is used for performing a local operation procedure including steps of: receiving location information of at least one touched GUI object provided by a touch and display driving unit and transmitting the location information to a main processing unit; receiving updated image data for at least one GUI object image from the main processing unit; combining the updated image data with the background image data to form locally updated display image data and transmitting the locally updated display image data to the touch and display driving unit.