Abstract:
A software-defined sensing system capable of responding to CPU commands, including: at least one input operation sensing module; at least one driving unit for driving the at least one input operation sensing module via at least one first interface; at least one control unit for receiving at least one sensors-configuration command via at least one second interface to control the at least one driving unit; at least one central processing unit, having at least one first function library to provide at least one sensors-configuration setting function for determining the sensors-configuration command; and at least one application program having at least one sensors-configuration function call instruction for generating the sensors-configuration command to provide at least one input sensing function.
Abstract:
A touch display driving circuit capable of responding to CPU commands, including: a first interface receiving touch configuration data from a CPU and outputting touch report data to the CPU; a second interface coupling with a touch display module; a control unit executing a touch detection procedure on the touch display module via the second interface to derive touch detected data, and processing the touch detected data to generate the touch report data, wherein the touch detection procedure is determined according to the touch configuration data determining a connection configuration of at least one multiplexer and a weighting configuration of at least one touch point, and the content of the touch report data include a sensed pressure profile, a finger print, a palm print, an ear image, characteristics of a finger print, characteristics of a palm print, or characteristics of an ear image.
Abstract:
A flat self-luminous touch switch, including: a self-luminous touch unit, including at least one flat self-luminous pixel and a pixel driving interface; and a switch control unit, including a first driving interface and a second driving interface, wherein, the first driving interface is coupled with the pixel driving interface to provide at least one pixel driving signal and transmit a touch detection signal; and the second driving interface provides an analog switch channel and/or at least one digital output signal according to a detection result of the touch detection signal.
Abstract:
An intelligent touch sensing device, including: a first electrode group having a first plurality of first electrodes; a second electrode group having a second plurality of second electrodes, each of the second electrodes being coupled with at least one active switch and the second plurality being larger than the first plurality; and a touch detection unit coupled with the first electrode group and with the second electrode group for performing a first touch detection procedure or performing the first detection procedure and then a second touch detection procedure as optionally required by an application program, the first touch detection procedure being acting on the first electrode group, and the second touch detection procedure being acting on at least one region of the second electrode group, wherein the at least one region is determined according to a detection result of the first touch detection procedure.
Abstract:
A touch display device having auxiliary capacitor, including: at least one touch operation area, each having two opposing substrates, between which are a first electrode, a first conductive line coupled with the first electrode, a second electrode, a second conductive line coupled with the second electrode, and a display layer neighboring both the first electrode and the second electrode; a display driver unit for outputting at least one display driving voltage; a touch detection unit having at least one touch signal sensing port; at least one auxiliary capacitor, each coupled with one of the at least one touch operation area; and at least one switch element; wherein, each of the at least one display driving voltage is coupled to one of the at least one touch operation area via one of the at least one switch element.
Abstract:
A driving circuit capable of enabling a display structure to provide a touch function, including: a first multiplexing interface for coupling with multiple gate driving lines; a second multiplexing interface for coupling with at least one storage capacitor driving line; a third multiplexing interface for coupling with multiple source driving lines; a fourth multiplexing interface for coupling with multiple transparent electrodes; and a control unit for driving the gate driving lines via the first multiplexing interface to form a capacitive network on a TFT display structure, and performing a capacitive touch detection procedure on the capacitive network via an interface selected from a group consisting of the second multiplexing interface, the third multiplexing interface, the fourth multiplexing interface, and any combination thereof.
Abstract:
A touch display driving circuit capable of responding to CPU commands, including: a first interface for receiving pixel data and touch configuration data; a second interface for coupling with a touch display; and a control unit, which drives the touch display via the second interface to show an image according to the pixel data, and executes a touch detection procedure on the touch display via the second interface, wherein the touch detection procedure is determined according to the touch configuration data.
Abstract:
An electronic paper touch device including: a first substrate; a first electrode layer located on the first substrate; an electronic paper display layer located on the first electrode layer; a transparent electrode layer located on the electronic paper display layer and having plural transparent electrodes; a second substrate located on the transparent electrode layer; and a control unit having a touch mode and an electronic paper mode, wherein, when the control unit is in the touch mode, the control unit will couple a touch detection unit with the first electrode layer and with the transparent electrode layer to perform a capacitive touch detection procedure.
Abstract:
A driving circuit capable of enabling a display structure to provide a touch function, including: a first multiplexing interface for coupling with multiple gate driving lines; a second multiplexing interface for coupling with at least one storage capacitor driving line; a third multiplexing interface for coupling with multiple source driving lines; a fourth multiplexing interface for coupling with multiple transparent electrodes; and a control unit for driving the gate driving lines via the first multiplexing interface to form a capacitive network on a TFT display structure, and performing a capacitive touch detection procedure on the capacitive network via an interface selected from a group consisting of the second multiplexing interface, the third multiplexing interface, the fourth multiplexing interface, and any combination thereof.
Abstract:
A touch display driving circuit capable of responding to CPU commands, including: a first interface for receiving pixel data and touch configuration data; a second interface for coupling with a touch display; and a control unit, which drives the touch display via the second interface to show an image according to the pixel data, and executes a touch detection procedure on the touch display via the second interface, wherein the touch detection procedure is determined according to the touch configuration data.