Abstract:
This invention relates to polymer polyols comprising one or more base polyols; one or more ethylenically unsaturated monomers in which at least one of the monomers is styrene which contains less than or equal to 1000 ppm of impurities; with one or more preformed stabilizers; in the presence of at least one free radical polymerization initiator; and optionally, one or more chain transfer agents.
Abstract:
The present invention relates to novel polymer polyols which have low viscosities and high hydroxyl numbers, and to a process for the preparation of these novel polymer polyols. These polymer polyols have hydroxyl numbers of ≧20, solids contents of about 30 to about 65% by weight and a viscosity that is less than or equal to: be[2.7c]. These comprise the reaction product of a base polyol, a preformed stabilizer and at least one ethylenically unsaturated monomer, in the presence of a free-radical polymerization initiator and at least one polymer control agent. The base polyol has a hydroxyl number of 60 to 1900, a functionality of 1 to 10, and an equivalent weight of 30 to 900.
Abstract:
The present invention relates to novel polymer polyols which have low viscosities and high hydroxyl numbers, and to a process for the preparation of these novel polymer polyols. These polymer polyols have hydroxyl numbers of 20, solids contents of about 30 to about 65% by weight and a viscosity that is less than or equal to: be[12.7c]. These comprise the reaction product of a base polyol, a preformed stabilizer and at least one ethylenically unsaturated monomer, in the presence of a free-radical polymerization initiator and at least one polymer control agent. The base polyol has a hydroxyl number of 60 to 1900, a functionality of 1 to 10, and an equivalent weight of 30 to 900.
Abstract:
This invention relates to a process for the production of rigid and semi-rigid foams at low isocyanate levels, and to the foams produced by this process. The process comprises reacting a polyisocyanate component with an isocyanate-reactive component, in the presence of at least one blowing agent, at least one surfactant and at least one catalyst. Suitable isocyanate-reactive components are characterized as having a solids content of at least 40% by weight, and an overall hydroxyl number of the remaining liquid, non-solids portion of at least 160. In addition, the isocyanate-reactive component comprises at least 50% by weight of a polymer polyol having a solids content of at least 30% by weight and in which the base polyol has a hydroxyl number of at least 75.
Abstract:
This invention relates to a process for the production of rigid and semi-rigid foams at low isocyanate levels, and to the foams produced by this process. The process comprises reacting a polyisocyanate component with an isocyanate-reactive component, in the presence of at least one blowing agent, at least one surfactant and at least one catalyst. Suitable isocyanate-reactive components are characterized as having a solids content of at least 40% by weight, and an overall hydroxyl number of the remaining liquid, non-solids portion of at least 160. In addition, the isocyanate-reactive component comprises at least 50% by weight of a polymer polyol having a solids content of at least 30% by weight and in which the base polyol has a hydroxyl number of at least 75.
Abstract:
The present invention relates to ultra-high solids content polymer polyols which have good filterability while maintaining a reasonable viscosity, and to a process for the preparation of these ultra-high solids contents polymer polyols. These polymer polyols comprise the free-radical polymerization product of (A) a base polyol, (B) a pre-formed stabilizer, (C) at least one ethylenically unsaturated monomer, (D) at least one free-radical polymerization initiator, and (E) at least one chain transfer agent. The solids contents varies from 60% to about 85% by weight.