Abstract:
An image forming apparatus includes a nip forming member and a transfer bias output device that outputs a transfer bias to form a transfer electric field in a transfer nip between the nip forming member and an intermediate transfer member. Upon transfer of a composite toner image including a particular toner image onto a recording medium in the transfer nip, the transfer bias output device outputs the transfer bias including a first superimposed bias in which a direct current (DC) component is superimposed on an alternating current (AC) component. Upon transfer of the composite toner image without the particular toner image onto the recording medium in the transfer nip, the transfer bias output device outputs one of the transfer bias including a second superimposed bias having a peak-to-peak value of the AC component smaller than that of the first superimposed bias and the transfer bias including only the DC component.
Abstract:
A discharge device is provided. The discharge device includes a liquid feed-discharger, and the liquid feed-discharger includes a feed unit configured to feed a liquid and a discharge unit having discharge holes configured to discharge the liquid fed by the feed unit. A ratio (X/Y) of a maximum cross-sectional area X (mm2) to a minimum cross-sectional area Y (mm2) of the liquid feed-discharger in a direction orthogonal to an axial direction of the liquid feed-discharger is from 1 to 5.
Abstract:
A particulate poly(lactic-co-glycolic) acid (PLGA) is provided. The particulate PLGA comprises a poly(lactic-co-glycolic) acid (PLGA), and has an average volume-based particle diameter of 80 nm or less and a relative span factor (R.S.F.) satisfying the following formula (1): 0
Abstract:
An image forming apparatus includes a transfer member configured to abut against an image carrier for carrying a toner image to form a transfer nip; and a power supply configured to output a bias voltage for transferring the toner image on the image carrier onto a recording medium nipped in the transfer nip. The bias voltage includes a first voltage for transferring the toner image from the image carrier onto the recording medium in a transfer direction and a second voltage having an opposite polarity of the first voltage, the first and the second voltages being alternately output. A time-averaged value of the bias voltage is set to a polarity in the transfer direction and is set in the transfer direction side with respect to a median between a maximum and a minimum of the bias voltage.
Abstract:
An image forming apparatus includes a transfer member configured to abut against an image carrier for carrying a toner image to form a transfer nip; and a power supply configured to output a bias voltage for transferring the toner image on the image carrier onto a recording medium nipped in the transfer nip. The bias voltage includes a first voltage for transferring the toner image from the image carrier onto the recording medium in a transfer direction and a second voltage having an opposite polarity of the first voltage, the first and the second voltages being alternately output. A time-averaged value of the bias voltage is set to a polarity in the transfer direction and is set in the transfer direction side with respect to a median between a maximum and a minimum of the bias voltage.
Abstract:
A cleaning method for cleaning a droplet ejector, which includes nozzles to eject a particulate material composition liquid, and a nozzle plate bearing the nozzles is provided. The cleaning method includes forming a substantially closed cleaning space outside the nozzles and the nozzle plate; supplying a cleaning liquid to the cleaning space so that the nozzles and the nozzle plate are contacted with the cleaning liquid; and vibrating the cleaning liquid when the nozzles and the nozzle plate are contacted with the cleaning liquid to clean the nozzles and the nozzle plate.
Abstract:
A cleaner, such as provided in a particulate material production apparatus, for cleaning a droplet ejector, which includes nozzles to eject a particulate material composition liquid as droplets, and a nozzle plate bearing the nozzles. A substantially closed cleaning space is formed outside the nozzles and the nozzle plate, and a first cleaning liquid supplying device supplies a first cleaning liquid to the cleaning space so that the nozzles and the nozzle plate are contacted with the first cleaning liquid. In addition, a vibrator vibrates the first cleaning liquid when the nozzles and the nozzle plate are contacted with the first cleaning liquid to clean the nozzles and the nozzle plate.
Abstract:
An information processing device can receive a positioning signal that is transmitted from a transmitting device. The information processing device includes an input reception unit for receiving an input of a destination and for identifying first location information including fir floor number information, the first floor number information indicating a floor number of the destination in a structure including the destination, a retrieval unit for retrieving second location information including second floor number information from the positioning signal, the second floor number information indicating a floor number on which the transmitting device is provided in a structure in which the transmitting device is provided, and a calculation unit for calculating a route from a current location of the information processing device to the destination by using the first location information and the second location information.