Abstract:
The present disclosure relates to an organic electroluminescent device comprising an organic electroluminescent compound of high refractive index. According to the present disclosure, an organic electroluminescent device having decreased thickness while implementing a desired color coordinate, or implementing deeper color coordinate in the same device thickness can be provided. As such, the production efficiency of the device can be increased by decreasing the material amount used in the organic electroluminescent device or a broader light-emitting zone can be obtained due to deeper color characteristic in the same device thickness.
Abstract:
The present disclosure relates to an organic electroluminescent compound of Formula 1 (variables Y1, Y2 and R1 to R4 defined herein), and an organic electroluminescent device comprising the same. The organic electroluminescent compound according to the present disclosure can be used for the manufacture of an organic electroluminescent device showing improvement in luminous efficiency, especially in current efficiency.
Abstract:
The present invention relates to a novel organic electroluminescent compound, layer and an organic electroluminescent device using the same. Said organic luminescent compound provides an organic light emitting layer and/or device which has high luminous efficiency and a long operation lifetime and requires a low driving voltage improving power efficiency and power consumption.
Abstract:
The present invention relates to an organic compound represented by the following formula 1. The organic compound according to the present invention can produce an organic electroluminescent device having low driving voltage, excellent current and power efficiencies, and remarkably improved driving lifespan.
Abstract:
The present disclosure relates to an organic electroluminescent compound of Formula 1 (variables R1-R10 defined herein), and an organic electroluminescent device comprising the same. By using the organic electroluminescent compound according to the present disclosure, it is possible to produce an organic electroluminescent device which can be operated at a lowered driving voltage, shows excellence in luminous efficiency such as current efficiency and power efficiency, and has high color purity and improved lifespan.
Abstract:
The present invention relates to an organic electroluminescent device comprising at least one light-emitting layer between an anode and a cathode, wherein the light-emitting layer comprises a host and a phosphorescent dopant; the host consists of multi-component host compounds; at least a first host compound of the multi-component host compounds is a specific bicarbazole derivative containing an aryl group, and a second host compound is a specific carbazole derivative including a nitrogen-containing heteroaryl group. According to the present invention, the organic electroluminescent device using the multi-component host compounds has a high efficiency and long lifespan compared with the conventional device using one component host compound.
Abstract:
The present disclosure relates to an organic electroluminescent compound of Formula 1 (variables R1-R10 defined herein), and an organic electroluminescent device comprising the same. By using the organic electroluminescent compound according to the present disclosure, it is possible to produce an organic electroluminescent device which can be operated at a lowered driving voltage, shows excellence in luminous efficiency such as current efficiency and power efficiency, and has high color purity and improved lifespan.
Abstract:
The present invention relates to a plurality of host materials and an organic electroluminescent device comprising the same. By comprising a specific combination of a plurality of host compounds, the organic electroluminescent device according to the present invention provides excellent lifespan characteristics while maintaining high luminous efficiency.
Abstract:
The present invention relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same. The organic electroluminescent compound according to the present invention can produce an organic electroluminescent device having low driving voltage, excellent current and power efficiencies, and remarkably improved driving lifespan.
Abstract:
The present disclosure relates to an organic electroluminescent device comprising an anode, a cathode, and an organic layer between the anode and the cathode, wherein the organic layer comprises one or more light-emitting layers; and at least one light-emitting layer comprises one or more dopant compounds and two or more host compounds. The organic electroluminescent device of the present disclosure has low driving voltage, high color purity, high luminous efficiency, and a long lifespan.