Abstract:
Multi-conductor cables for telecommunication systems are disclosed. One multi-conductor cable may include a plurality of fiber-optic conductors and/or power conductors extending within an outer jacket in a main body portion of the cable, and extending outside of the outer jacket in a break-out portion of the cable. A break-out boot may be attached to the outer jacket and may surround the conductors in a break-out portion of the cable. Potting material may be provided in the break-out boot within spaces between adjacent conductors to provide innovative sealing of the break-out portion.
Abstract:
Corrosion within a flangeless connector, or at an associated connection of a device or medium (e.g., cable), used in a wireless base station may be reduced by incorporating a seating member, e.g., an O-ring, between the connector and a connector port. Conductive plating selectively applied within the connector port may provide a low-resistance ground connection between the port and the connector, while a non-conductive coating selectively applied to a surface against which the seating member is seated may form a weather-tight seal. The connection between the connector and the connector port is thereby protected from moisture, while exposed surfaces of the connector port re protected by the non-conductive coating.
Abstract:
Corrosion within a flangeless connector, or at an associated connection of a device or medium (e.g., cable), used in a wireless base station may be reduced by incorporating a seating member, e.g., an O-ring, between the connector and a connector port. Conductive plating selectively applied within the connector port may provide a low-resistance ground connection between the port and the connector, while a non-conductive coating selectively applied to a surface against which the seating member is seated may form a weather-tight seal. The connection between the connector and the connector port is thereby protected from moisture, while exposed surfaces of the connector port re protected by the non-conductive coating.
Abstract:
Multi-conductor cables for telecommunication systems include a plurality of fiber-optic conductors and/or power conductors extending within an outer jacket in a main body portion of the cable, and extending outside of the outer jacket in a break-out portion of the cable. A break-out boot may be attached to the outer jacket and may surround the conductors in a break-out portion of the cable. Potting material may be provided in the break-out boot within spaces between adjacent conductors to provide innovative sealing of the break-out portion.
Abstract:
Corrosion within a flangeless connector, or at an associated connection of a device or medium (e.g., cable), used in a wireless base station may be reduced by incorporating a recessed portion in an outer surface of a body of the flangeless connector. The recessed portion helps retain a seating member, such as a deformable O-ring, to prevent water and other environmental material from seeping into the connector or connection. Further, inner surfaces of a port of a device that receives the flangeless connector may be covered with a conductive plating, while outer surfaces of the port may be covered with a non-conductive coating.