摘要:
A method for rejuvenating a strand-blocked cable having a conductor comprised of a plurality of conductor strands with interstitial volume therebetween blocked by a PIB based mastic, the conductor being surrounded by a polymeric cable insulation. The method comprising installing injection adapters that seal the cable ends of the cable and are usable to inject fluid into the interstitial volume between the conductor strands of the cable; elastically expanding the polymeric cable insulation through the application of pressure to the interstitial volume between the conductor strands of the cable; and injecting at least one injection fluid in which the PIB based mastic is at least partially soluble into the interstitial volume between the conductor strands of the cable. To facilitate elastic deformation of the polymeric cable insulation, the cable may be heated to and maintained at a temperature of T1 above ambient during the injection.
摘要:
In a conductive film forming method using photo sintering, a conductive film having low electric resistance is easily formed. Disclosed is a conductive film forming method in which a conductive film is formed using a photo sintering, which includes the steps of: forming a liquid film made of a copper particulate dispersion on a substrate, drying the liquid film to form a copper particulate layer, subjecting the copper particulate layer to photo sintering to form a conductive film, attaching a sintering promoter to the conductive film, and further subjecting the conductive film having the sintering promoter attached to photo sintering. The sintering promoter is a compound which removes copper oxide from metallic copper. Thereby, the sintering promoter removes a surface oxide film of copper particulates in the conductive film.
摘要:
The present invention provides a method and an apparatus for forming an oriented nanowire material as well as a method for forming a conductive structure, which can be used to solve the problem of imperfect process for forming oriented nanowire material in prior art. The method for forming an oriented nanowire material of the present invention comprises: forming a liquid film in a closed frame by a dispersion containing nanowires; expanding the closed frame in a first direction so that the liquid film expands in the first direction along with the closed frame; contracting the closed frame in the first direction so that the liquid film contracts in the first direction along with the closed frame; transferring the contracted liquid film to a substrate; and curing the liquid film to form an oriented nanowire material on the substrate.
摘要:
Provided are methods and systems for forming piezoelectric coatings on power line cables using sol-gel materials. A cable may be fed through a container with a sol-gel material having a piezoelectric material to form an uncured layer on the surface of the cable. The layer is then cured using, for example, infrared, ultraviolet, and/or other types of radiation. The cable may be suspended in a coating system such that the uncured layer does not touch any components of the system until the layer is adequately cured. Piezoelectric characteristics of the cured layer may be tested in the system to provide a control feedback. The cured layer, which may be referred to as a piezoelectric coating, causes resistive heating at the outer surface of the cable during vibration of the cable due transmission of alternating currents and environmental factors.
摘要:
The present invention provides an electrical conductor (1) comprising a core of multiple stranded bare wires (2) and an insulating layer (4) surrounding the core, wherein substantially all interstices and/or spaces (3) between the bare wires are filled with a water immiscible viscous fluid (4), such as a jelly or gel; and a method for manufacturing such a conductor.
摘要:
An electrical component including a substrate comprising an electroconductive filler in a first polymeric binder, and a coating layer adhered to at least a portion of the substrate surface, the coating layer comprising a nanostructured electroconductive particulate dispersed in a polymeric binder, such as an epoxy resin. A method of making the component also is described.
摘要:
The invention relates to an umbilical comprising at least two elongated elements chosen from a group consisting of steel tubes (1,2), electrical cables (4), optical fiber cables (3), and combinations thereof arranged side by side within a common outer sheath (5) along the length of the umbilical, where the interstices between the elongated elements (2,3,4) and the elongated elements (2,3,4) and the common sheath (5) are filled with a fluid filling material (6), which tempers to a higher viscosity after complete filling and adheres to the outer surface of the elements (2,3,4) and the inner surface of the common sheath (5).
摘要:
A plurality of electric wires of a wire harness have a filler applied to predetermined waterproofing portions thereof. A sheet is wound on a peripheral surface of a bundle of electric wires to which the filler has been applied, and the sheet-wound waterproofing portion is repeatedly pressed from opposite sides. By such pressing, a relative displacement of the electric wires and the filler can be accelerated and the filler can be spread and filled securely in the waterproofing portion.
摘要:
A plurality of electric wires of a wire harness have a filler applied to predetermined waterproofing portions thereof. A sheet is wound on a peripheral surface of a bundle of electric wires to which the filler has been applied, and the sheet-wound waterproofing portion is repeatedly pressed from opposite sides. By such pressing, a relative displacement of the electric wires and the filler can be accelerated and the filler can be spread and filled securely in the waterproofing portion.
摘要:
A method for enhancing the dielectric properties of an electrical cable having a central stranded conductor encased in a polymeric insulation. The cable defines an interstitial void space (v.sub.1) between the strands of the conductor. The volume (v.sub.2) of a dielectric enhancement fluid required to be absorbed by the cable to reach a predetermined level of dielectric enhancement is determined. The ratio of (v.sub.1 /v.sub.2) is computed. If the ratio of (v.sub.1 /v.sub.2) is greater than a maximum ratio of 1.4, then a quantity of the dielectric enhancement fluid is diluted with a sufficient quantity of a diluent to produce a mixture of diluent and dielectric enhancement fluid, such that when the volume (v.sub.1) of the mixture is supplied to the cable interior, the cable will have been supplied with a volume (v.sub.3) of the dielectric enhancement fluid within the mixture such that (v.sub.3 /v.sub.2) is less than 1.4. The diluent is substantially insoluble in the polymeric insulation, has a sufficiently low initial viscosity to enable introduction into the cable interior, and is miscible with the dielectric enhancement fluid.