Abstract:
New methods and systems for manufacturing a three-dimensional form, comprising steps of providing a plurality of particulates; contacting the particulates with an activation agent; contacting particulates having the activation agent with a binder material that is activatable by the activation agent; at least partially hardening the binder for forming a layer of the three-dimensional form; and repeating these steps to form the remainder of the three-dimensional form. Following sequential application of all required layers and binder material to make the form, the unbound particles are appropriately removed (and optionally re-used), to result in the desired three-dimensional form. The invention also contemplates a novel method for preparing a form, where unbound particulates free of binder material are re-claimed.
Abstract:
New methods and systems for manufacturing a three-dimensional form, comprising steps of providing a plurality of particulates; contacting the particulates with an activation agent; contacting particulates having the activation agent with a binder material that is activatable by the activation agent; at least partially hardening the binder for forming a layer of the three-dimensional form; and repeating these steps to form the remainder of the three-dimensional form. Following sequential application of all required layers and binder material to make the form, the unbound particles are appropriately removed (and optionally re-used), to result in the desired three-dimensional form. The invention also contemplates a novel method for preparing a form, where unbound particulates free of binder material are re-claimed.
Abstract:
A method for the manufacturing of parts, especially molds or cores, by a deposition technique, comprising the steps of: depositing a layer of a pourable composite material containing particles with a binder material coating, into a process area of a defined length and width fitting to the dimensions of a part to be manufactured; applying a moderating agent onto said composite material layer in a selective sub-area of said process area; inducing energy to solidify said selective sub-area, respectively the area of said process area void of said moderating agent; repeating the aforementioned steps; and separating of solidified composite material from non-solidified composite material.
Abstract:
A process to produce models in layers is described, whereby a first material and then selectively a second material is applied in layers on a building platform and these two application stages are repeated until a desired pattern is achieved. The two materials form a solid if a suitable mixture ratio is used and the first material is a material mixture. The material mixture is at least partially prepared prior to each application stage.
Abstract:
Described herein is a device for pattern building in layers, which has a frame (1), a vertically movable and interchangeable workpiece platform (17), and a material feeder with a spreader (4), whereby the spreader (4) serves to feed material from a storage bin situated in the workspace above the workpiece platform (17), and the workpiece platform (17) is fixed at least when building a pattern. The workpiece platform (17) is accordingly loaded into the device from one side and unloaded from the other side of the device.
Abstract:
New methods and systems for manufacturing a three-dimensional form, comprising steps of providing a plurality of particulates; contacting the particulates with an activation agent; contacting particulates having the activation agent with a binder material that is activatable by the activation agent; at least partially hardening the binder for forming a layer of the three-dimensional form; and repeating these steps to form the remainder of the three-dimensional form. Following sequential application of all required layers and binder material to make the form, the unbound particles are appropriately removed (and optionally re-used), to result in the desired three-dimensional form. The invention also contemplates a novel method for preparing a form, where unbound particulates free of binder material are re-claimed.
Abstract:
New methods and systems for manufacturing a three-dimensional form, comprising steps of providing a plurality of particulates; contacting the particulates with an activation agent; contacting particulates having the activation agent with a binder material that is activatable by the activation agent; at least partially hardening the binder for forming a layer of the three-dimensional form; and repeating these steps to form the remainder of the three-dimensional form. Following sequential application of all required layers and binder material to make the form, the unbound particles are appropriately removed (and optionally re-used), to result in the desired three-dimensional form. The invention also contemplates a novel method for preparing a form, where unbound particulates free of binder material are re-claimed.
Abstract:
A rapid-prototyping production method for producing a structural body by deposition, in several subsequent deposition steps, of subsequent layers of a building material one onto the other. The building material is selectively deposited in each layer in a liquid state in the form of droplets and being caused to solidify when deposited. After deposition, the layer is lowered into a supporting fluid which has a liquid state and has a density which is at least the same as the density of the building material.
Abstract:
The present invention relates to a method for producing three-dimensional objects based on computer-provided data, whereby a material is deposited in layers in a process chamber and the material is selectively solidified and/or bonded using a bonding apparatus and/or a solidifying apparatus in the process chamber, these steps being repeated. A conveyance of the material proceeds during the build process and proceeds continuously, sequentially and evenly up to an unpacking position.
Abstract:
The invention relates to a method for producing a part using a deposition technique, especially a part in the form of a casting mold or a casting core. A layered composite is built up in layers, the individual layers each containing particulate material and binding material as well as optionally, a treatment agent. The layers maintain a predetermined porosity. The binding agent can be hardened especially with a fluid hardening agent. The layer composite is built up in the absence of the hardening agent. Once construction is complete, the layer composite is flooded with the fluid hardening agent using the residual porosity of the predetermined partial areas and in this way, is hardened.