摘要:
A process for the production of an ethylene alpha-olefin copolymer is disclosed, the process including polymerizing ethylene and at least one alpha-olefin by contacting the ethylene and the at least one alpha-olefin with a metallocene catalyst in at least one gas phase reactor at a reactor pressure of from 0.7 to 70 bar and a reactor temperature of from 20° C. to 150° C. to form an ethylene alpha-olefin copolymer. The resulting ethylene alpha-olefin copolymer may have a density D of 0.927 g/cc or less, a melt index (I2) of from 0.1 to 100 dg/min, a MWD of from 1.5 to 5.0. The resulting ethylene alpha-olefin copolymer may also have a peak melting temperature Tmax second melt satisfying the following relation: Tmax second melt>D*398−245.
摘要翻译:公开了一种生产乙烯α-烯烃共聚物的方法,该方法包括通过在至少一个气相反应器中使乙烯和至少一种α-烯烃与茂金属催化剂接触来聚合乙烯和至少一种α-烯烃 反应器压力为0.7至70巴,反应器温度为20℃至150℃,形成乙烯α-烯烃共聚物。 得到的乙烯α-烯烃共聚物的密度D可以为0.927g / cc或更低,熔体指数(I 2/2)为0.1至100dg / min,MWD为1.5至5.0 。 所得到的乙烯α-烯烃共聚物也可以具有满足以下关系的峰值熔融温度T max max第二熔融物:T最大第二熔体 SUB> D * 398-245。
摘要:
The present invention comprises an implantable subcutaneous port for anchoring a transcutaneous treatment component. The implantable subcutaneous port comprises a body portion and one or more frangible lines formed within the body portion. The body portion is adapted for receiving the transcutaneous treatment component beneath the point of entry into the physiology of a patient and routing the transcutaneous treatment component. The body portion is produced from a deformable material and has an area footprint and defines a support wall through which the transcutaneous treatment component enters the body portion. Fracturing the one or more frangible lines formed within the body portion enables removal of the body portion from the physiology of a patient through a transcutaneous opening defining an area of less than thirty percent of the area footprint of the body portion.
摘要:
The present invention comprises an implantable subcutaneous port for anchoring a transcutaneous treatment component. The implantable subcutaneous port comprises a body portion and one or more frangible lines formed within the body portion. The body portion is adapted for receiving the transcutaneous treatment component beneath the point of entry into the physiology of a patient and routing the transcutaneous treatment component. The body portion is produced from a deformable material and has an area footprint and defines a support wall through which the transcutaneous treatment component enters the body portion. Fracturing the one or more frangible lines formed within the body portion enables removal of the body portion from the physiology of a patient through a transcutaneous opening defining an area of less than thirty percent of the area footprint of the body portion.
摘要:
The present invention is a modular implantable medical device that is used deliver materials or energy into a patient's physiology, or from one region of a patient's physiology to another. The device includes a port element with a passageway therethrough for directing and anchoring a conduit element in a desired location. Both elements can be adjusted during placement to maximize the safety, comfort, and efficacy of use. In one embodiment, the port element is comprised of two components such that the passage way is formed after the components are assembled. This modularity enables a large diameter section of the conduit to be advanced past the port location, and the port to be assembled about a smaller proximal section of the conduit, thereby establishing full contact between the port and conduit elements to anchor the device in an optimal position.
摘要:
The present invention comprises a deformable, implantable subcutaneous port for anchoring a transcutaneous treatment component. A port body portion having a normal area port footprint is adapted by means of a port orifice for receiving and anchoring the transcutaneous treatment component beneath the point of entry into the physiology of a patient and for routing the transcutaneous treatment component. The port body portion is produced from a deformable material and has structure and/or composition that provides deformability characteristics of the port such that collapsing, folding, stretching, elongating and/or twisting the port body portion into a modified port shape having a reduced-size port profile enables removal of the port body portion from the physiology of a patient through a relatively small transcutaneous opening.
摘要:
The present invention comprises an implantable subcutaneous port for anchoring a transcutaneous treatment component. The implantable subcutaneous port comprises a body portion and one or more frangible lines formed within the body portion. The body portion is adapted for receiving the transcutaneous treatment component beneath the point of entry into the physiology of a patient and routing the transcutaneous treatment component. The body portion is produced from a deformable material and has an area footprint and defines a support wall through which the transcutaneous treatment component enters the body portion. Fracturing the one or more frangible lines formed within the body portion enables removal of the body portion from the physiology of a patient through a transcutaneous opening defining an area of less than thirty percent of the area footprint of the body portion.
摘要:
The present invention is a modular implantable medical device that is used deliver materials or energy into a patient's physiology, or from one region of a patient's physiology to another. The device includes a port element with a passageway therethrough for directing and anchoring a conduit element in a desired location. Both elements can be adjusted during placement to maximize the safety, comfort, and efficacy of use. In one embodiment, the port element is comprised of two components such that the passage way is formed after the components are assembled. This modularity enables a large diameter section of the conduit to be advanced past the port location, and the port to be assembled about a smaller proximal section of the conduit, thereby establishing full contact between the port and conduit elements to anchor the device in an optimal position.
摘要:
The present invention is a self-contained, high-energy liquid rock-boring system that will bore a small-diameter access hole [5] several hundred meters through hard granite and other obstacles within minutes of deployment. It employs a land unit [100] platform subsystem [1000] with an energetic fluid fuel reservoir [1300] and a boring subsystem [3000] having a plurality of pulsejets [3100]. Each pulsejet [3100] repeatedly ignites the energetic fluid [7] causing a plurality of rapidly-expanding gas bubbles [3250] which create and force a plurality liquid slugs [10] ahead of them rapidly out through a nozzle [3260] causing the slugs [10] to impact against materials ahead of the nozzles [3260], boring an access hole [5]. The system also employs an umbilical subsystem [2000] connecting the boring [3000] and the platform subsystems [1000]. The system can be used to rapidly bore an access hole [5] to provide air and resources to trapped miners. Alternatively, the system may also be used to bore an access hole [5] to underground threatening targets to neutralize them.
摘要:
The device of the present invention includes a modular, implantable catheterization port that is composed of a body portion, an interior port and an exterior port. The interior and exterior ports are selectively attachable to the body portion such that the device can be assembled by a clinician at the skin entry site without compromising the position of other portions of the device within and outside of the patient. The device further includes a first skirt and a second skirt that surround the exterior port at its junction with the body portion. Both skirts are designed to gradually affix themselves into the surrounding tissues of the patient's body during the initial phase of healing. The first skirt is composed of a bio-absorbable material such that in subsequent phases of healing its connection to the surrounding tissues diminishes, leaving the second skirt to maintain a mature, secure, and permanent connection to the tissues. The bio-absorbable material can be selected prior to assembly in order to ensure that the first skirt is fully absorbed at the conclusion of the procedure, thus permitting an easy and less-invasive removal of the device from the patient.
摘要:
The present invention is an implantable medical device that is used deliver materials or energy into a patient's physiology, or from one region of a patient's physiology to another. The device includes a port element with a passageway therethrough for directing and anchoring a conduit element in a desired location. The implantable port stabilizes an elongated conduit within human physiology for long-term use, and includes a support passageway formed through the port and extending between an upper surface and a lower surface of the port, wherein the support passageway is sized and shaped for receiving the elongated conduit slideably inserted therethrough. The device includes a tissue ingrowth scaffold fixedly disposed on at least a portion of at least one surface of the implantable port for positioning in contact with adjacent tissue.