摘要:
Frame processing for a wireless communication system. The frame processing includes detecting reception of a frame based on a portion of a preamble of a frame, wherein the frame includes a preamble and a data payload. With detecting the reception of a frame, determining a frame type of a plurality of frame types from at least the portion of the preamble. Processing a remaining portion of the preamble in accordance with the frame type to determine payload processing parameters, and processing the data payload based on the payload processing parameters.
摘要:
A network device for transmitting a set of known pilot symbols in a communications system utilizing a plurality of transmit sources. The network device includes generating means for generating the set of known pilot symbols to be transmitted for each of the plurality of transmit sources and inserting means for inserting pilot symbols for each of the plurality of transmit sources. The network device also includes creating means for creating a near to full orthogonal matrix over time and frequency using the fewest number of pilot symbols. The pilot symbols are used for at least one of channel, frequency, and phase tracking at a receiving station.
摘要:
Carrier detection applicable for SISO, MIMO, MISO, and SIMO communications. A novel approach is presented to perform carrier detection for a signal found in any of a wide variety of communication systems including single-input-multiple-output (SISO), multiple-input-multiple-output (MIMO), multiple-input-single-output (MISO) single-input-multiple-output (SIMO), communication systems. This novel approach to performing carrier detection is more robust than those approaches existent in the art. By employing normalization with respect to power in determined a modified correlation function, there is less susceptibility to false detects. Also, this approach is quite robust to any circuitry DC offsets that may undesirably exist within a communication device that undergoes operational changes due to a variety of factors including environmental perturbations and/or changes in processing circuitry within the communication device (e.g., changes in gain control).
摘要:
A method is disclosed for correcting carrier frequency offset (CFO) in a received data packet that includes one or more M data streams. The data packet has a payload portion preceded by a preamble portion, the payload portion having a plurality of data symbols (L) each of which include a plurality of data tones (K). The method comprises, making a per-stream preamble CFO estimate for each data stream by correlating repeated preamble portions that precede the data packet. The per-stream preamble CFO estimates are weighted and averaged to obtain a single preamble CFO estimate. Any CFO in each received data stream is then corrected according to the preamble CFO estimate. Additionally, for an lth data symbol in a data packet, a per-tone CFO estimate is derived and successively averaged over frequency (tones), time (symbols) and space (data steams) to derive data CFO estimate pdata. Any CFO in each received data stream may be corrected according to the data CFO estimate, and/or the preamble CFO estimate.
摘要:
Multiple-input-multiple-output (MIMO) timing recovery. A novel approach is presented to perform timing recovery when processing the multiple received signals within a MIMO communication device. This may be implemented for a singular received signal, or a plurality of received signal streams. In addition, this timing recovery may be performed in conjunction with carrier detection to provide more robust performance. Alternatively, indicia and/or signals corresponding to carrier detection of these signals may be provided to timing recovery functionality from carrier detection functionality external to the timing recovery functionality. Certain processing and analysis is performed on a modified correlation function that is generated using samples of moving windows that pass over symbols of a packet. Based on this analysis of the modified correlation function, and sometimes in conjunction with one or more carrier detect signals, timing recovery may be performed thereby locating the point at which decoding of the packet may be performed.
摘要:
A method is described for correcting sampling frequency offset (SFO) of a data packet in a communications system where carrier frequency (fc) and sampling frequency (fs) are driven by a common clock source. The method comprises, for each lth symbol in the data packet, estimating carrier frequency offset (CFO) in a received data packet. From the CFO estimate, an SFO estimate is derived, wherein the SFO is approximately equal to fs multiplied by said CFO estimate, and divided by fc. An SFO phase correction is generated according to the SFO estimate for each kth tone in a data stream. The SFO phase correction is then applied to each received data stream.
摘要翻译:描述了一种用于校正通信系统中的数据分组的采样频率偏移(SFO)的方法,其中驱动载波频率(f SUB)和采样频率(f> s) 由公共时钟源。 对于数据分组中的每个第l0个符号,该方法包括估计接收的数据分组中的载波频率偏移(CFO)。 根据CFO估计,导出SFO估计,其中SFO近似等于所述CFO估计的乘积,并除以f C c。 根据数据流中的每个第k个音调的SFO估计来生成SFO相位校正。 然后将SFO相位校正应用于每个接收到的数据流。
摘要:
A communication system, including a receiver, is described having a common clock source that drives both carrier frequency (fc) and sampling frequency (fs). The receiver comprises a first signal processing stage for down converting a received data stream to baseband, a demodulation module coupled to the first signal processing stage for demodulating the down-converted data stream, and a second signal processing stage coupled to the demodulation module for decoding the demodulated data stream. Additionally, the receiver includes a carrier frequency offset (CFO) estimation module and a sampling frequency offset (SFO) correction module. The SFO correction module receives an estimated CFO, and then determines an SFO correction based on the estimated CFO, and applies the SFO correction to the received data stream.
摘要:
The present invention relates to a DC offset canceling circuit. In one aspect of the invention, a DC offset canceling circuit with independently configurable gain and roll-off frequency is provided. In one embodiment of the present invention, the DC offset canceling circuit is used in the receive path of a down-conversion wireless receiver. In another aspect of the invention, a method for independently varying the gain and the roll-off frequency of the DC offset canceling circuit is provided. In one embodiment, the method is used to independently operate a gain control scheme and a DC offset cancellation strategy in a DC canceling circuit.
摘要:
The present invention provides a method for carrier detection associated with the receipt of MIMO RF packet communications. This involves receiving multiple MIMO RF packet communications with multiple receiver pathways, wherein the RF packet communications each comprise a preamble and data. The RF packet communications are sampled by a carrier detector before, during or after conversion to baseband. The carrier detectors are used to produce a set of carrier detection metrics for each reception pathway. These carrier detection metrics may be combined arithmetically with those of other reception pathways to produce a multi-reception pathway carrier detect. Alternatively, these carrier detection metrics can be processed to produce a logical decision or binary detection signal value associated with each reception pathway, which is then logically combined with the logical decisions of other reception pathways to produce a multi-reception pathway carrier detect.
摘要:
The present invention relates to a DC offset canceling circuit. In one aspect of the invention, a DC offset canceling circuit with independently configurable gain and roll-off frequency is provided. In one embodiment of the present invention, the DC offset canceling circuit is used in the receive path of a down-conversion wireless receiver. In another aspect of the invention, a method for independently varying the gain and the roll-off frequency of the DC offset canceling circuit is provided. In one embodiment, the method is used to independently operate a gain control scheme and a DC offset cancellation strategy in a DC canceling circuit.