摘要:
A thermal cell has an infrared source element for producing an infrared signal and a spatial decorrelator element which spatially decorrelates the generated infrared signal to increase the fill factor of the thermal cell. The infrared source element includes an infrared generating cell, with a resistive element. The spatial decorrelator element is disposed above and spaced apart from the infrared source element and has an aperture formed therein and through which the infrared signal radiates. The aperture extends substantially orthogonal to the primary surface of the source element and between primary surfaces of the decorrelator element, which are in turn substantially parallel with the source element primary surface. The side walls of the aperture reflect the infrared signal. The opening in the primary surface of the decorrelator element which is furthest from the primary surface of the source element has an area which is greater than that of the opening in the primary surface of the decorrelator element which is closest to the primary surface of the source element.
摘要:
Reflections from an air-to-solid interface in a multiple reflector optical device are suppressed by giving the output surface of the device a slightly curved refractive surface so as to deflect the reflections away from the optical axis of the device. The device is shown in use as a transducer input/output device, and as a fiber-optic cable terminus and coupler.
摘要:
A system of reflectors is used to form beam-expanding and collimating electro-optic transducer devices, including radiation sources and/or detectors. Preferably, the reflector system is of the Cassegrainian or Ritchey-Chretien type. Radiation such as light signals can be conducted to or from the transducers by fiber-optic cables. Alignment of optical conductors or “cores” of the fiber-optic cables or the reflector system with a transducer is provided by coupling a magnetic member to the conductor or reflector system and applying a controllable magnetic field from outside of the device to provide alignment, and then fixing the components in place by the use of means such as light-curable epoxy resin.
摘要:
Producing a tool for creating a mandrel for forming elliptically-shaped lens elements of a lenticular lens array comprises the steps of providing a base member having a radius b corresponding to a minor axis of an elliptical shape, the elliptical shape corresponding to a desired elliptical shape for each lens element of the lenticular lens array, and cutting the base member along a plane that forms an angle k with the minor axis of the desired elliptical shape. The elliptical shape comprises a major axis perpendicular to the minor axis, a vertex of the desired elliptical shape lies at a point a along the major axis, and the angle k is given by the formula cosine(k)=b/a.
摘要翻译:制造用于形成用于形成双凸透镜阵列的椭圆形透镜元件的心轴的工具包括以下步骤:提供具有对应于椭圆形的短轴的半径b的基底构件,所述椭圆形形状对应于期望的椭圆形状 对于双凸透镜阵列的每个透镜元件,以及沿着与所需椭圆形的短轴形成角度k的平面切割基底构件。 椭圆形包括垂直于短轴的长轴,所需椭圆形的顶点位于沿着长轴的点a处,角度k由公式cosine(k)= b / a给出。
摘要:
A tool for creating a mandrel comprises a circular-shaped portion that approximates a circular portion of a desired elliptical shape, and a plurality of facets disposed adjacent to the circular-shaped portion. Each facet approximates a portion of the elliptical shape.
摘要:
A lenticular lens array for creating a visual effect for an image viewed through the lenticular lens array comprises a plurality of lenticules disposed adjacent to each other. Each lenticule comprises a lenticular lens element on one side and a substantially flat surface on an opposite side. Each lenticular lens element has a vertex and a cross section comprising a portion of an elliptical shape. Alternatively, the cross section can comprise an approximated portion of an elliptical shape. The elliptical shape comprises a major axis disposed substantially perpendicular to the substantially flat surface of each respective lenticular lens element. The vertex of each respective lenticular lens element lies substantially along the major axis of the elliptical shape.
摘要:
A system of reflectors is used to form a beam-expanding and collimating terminus and coupler for fiber-optic cables. Preferably, the reflector system is of the Cassegrainian or Ritchey-Chretien type. Alignment of optical conductors or “cores” of fiber-optic cables is provided by coupling a magnetic member to one core end and applying a controllable magnetic field from outside of the terminus to move the core into alignment position, and then fixing the core in place by the use of means such as light-curable epoxy resin. Use of this process in termini, couplers and splices is described.