Abstract:
A radio-frequency antenna for a magnetic resonance apparatus has an antenna conductor in the form of a ribbon conductor. The ribbon antenna conductor has interconnects arranged side-by-side. Neighboring interconnects are connected to one another via bridges that conduct radio-frequency currents.
Abstract:
A resonator for use in a magnetic resonance imaging apparatus for transmitting and receiving high frequency signals is formed by a combination of two antenna sub-systems, which generate respective magnetic fields which are perpendicular to each other, with the currents in the sub-system being phase-shifted by 90.degree. relative to each other, and each sub-system includes a capacitance which defines the resonant frequency. Each of the sub-systems forms a current loop, the current loops containing a common current network and a common base plate, which serves as a return path for both current loops. The junctions of the current network are connected via the resonant capacitances to the base plate, which consists of electrically conductive material. A circularly polarizing resonator is achieved for the transversal, fundamental field of the imaging apparatus, with the resonator also being capable of use as a surface resonator if the spacing between the current network and the base plate is small.
Abstract:
A method and apparatus for measuring electrical or magnetic fields, such as high-frequency alternating fields in a nuclear magnetic resonance tomography device, convert a test signal into a corresponding ultrasound signal, and transmit the ultrasound signal to a receiver, where the received signal is converted back into an electrical signal. The transmission path contains no metallic components and thus does not cause any disturbance in the field being measured.
Abstract:
An antenna structure for exciting a substantially homogeneous magnetic RF field and/or for receiving RF signals in a nuclear magnetic resonance tomography apparatus includes a hollow cylindrical conductor sheath which is substantially transmissive at low frequencies for gradient magnetic fields, a number of conductor units within the conductor sheath, each conductor unit including at least one conductor element, and RF reflector disposed at the end faces of the antenna structure and an external energy feed or reception device. In this antenna structure, the current drop which increasingly occurs toward the end faces of the antenna structure is largely compensatable by shaping the electrically conductive cross-section of the conductor units so as to decrease symmetrically from an axial center of the antenna structure moving toward the end faces of the structure. The conductor units thus have a largest cross-section at a center of the antenna structure, and a smallest cross-section at the end faces.
Abstract:
In a diagnostic magnetic resonance apparatus having an examination space, a radio-frequency antenna and a gradient coil system, the radio-frequency antenna is arranged closer to the examination space than is the gradient coil system. A radio-frequency shield arranged between the radio-frequency antenna and the gradient coil system, and has a first electrically conductive layer arrangement and a second electrically conductive layer arrangement arranged lying opposite the first arrangement, these being separated from one another by a dielectric. The layer arrangements have interconnects arranged side-by-side that are separated from one another by electrically insulating slots. The slots of the first layer arrangement are arranged offset relative to the slots in the second layer arrangement. Neighboring interconnects in at least one layer arrangement are connected to one another via bridges that conduct high-frequency currents, the bridges being arranged such that currents induced in the layer arrangement by the radio-frequency antenna can essentially flow only between the neighboring interconnects via the bridges.
Abstract:
A surface resonator for use in a magnetic resonance imaging apparatus having a transversal fundamental magnetic field is composed of two sub-systems, each generating a magnetic field with the magnetic fields being perpendicular relative to each other. Each sub-system contains two current loops, both of which enclose the magnetic field allocated to them in the same plane. A circularly polarizing surface resonator is thus obtained for the transversal fundamental magnetic field.
Abstract:
For operating the radio-frequency antenna of a nuclear magnetic resonance tomography apparatus, the antenna being connected to an asymmetrical line, a sheath wave trap is provided between the antenna and the line, with the inductor of the sheath wave trap being a toroid. A low-scatter sheath wave trap is obtained in this manner, particularly suitable for circularly polarized resonators. The trap suppresses difference currents caused by asymmetries, and thus simultaneously functions as a balanced-to-unbalanced transformer (balun).
Abstract:
A surface resonator for use in nuclear magnetic resonance tomography is a single turn loop of ribbon-like electrical conductor having spaced ends facing each other which form a capacitor whose capacitance determines the resonant frequency. The loop of ribbon-like conductor is shaped to conform substantially to the generated surface of a truncated cone. The ends of the loop may be in the form of spaced plates for providing the necessary capacitance, or may be connected by one or more discrete component capacitors.
Abstract:
A circularly polarizing RF antenna suitable for use in an MRI apparatus for obtaining tomograms of an examination subject includes two antenna systems, each having a winding, having two lateral legs and a middle leg, and a return path which form a resonant circuit in combination with one or more resonant capacitors. The middle legs of the two antenna systems are disposed so that they cross one another. One or more decoupling capacitors are provided between the two antenna systems. A circularly polarizing antenna for a magnetic resonance imaging system is thus obtained having a magnetic field vector in the imaging region which rotates in planes parallel to the pole surfaces of a C-shaped magnet which generates the fundamental magnetic field in the magnetic resonance imaging apparatus.
Abstract:
A device for damping a standing wave on a waveguide carrying a signal is provided. The device includes at least one pair of an impedance-up-transforming and an impedance-down-transforming Boucherot bridge is connected into the waveguide. The two Boucherot bridges bring about locally increased impedances and inductance values, with the result that a significantly improved standing wave suppression or damping is obtained. The down-transforming Boucherot bridge is connected directly behind the up-transforming bridge, with the result that down-transformation to the original impedance of the waveguide again can be carried out and a signal reflection can thus be avoided.