摘要:
The present disclosure describes systems and methods for propagating port state to intermediary devices of a cluster in a static link aggregation environment. The methods and systems include a cluster comprising a plurality of intermediary devices in communication with a network device via a static link aggregation comprising aggregated ports from different intermediary devices of the cluster. A first device of the static link aggregation is configured to detect that a health of the first device is below a predetermined threshold and, responsive to the detection, identify one or more ports in the aggregated ports as down. A second device of the link aggregation is configured to, responsive to the identification, remove the ports from a distribution list for the static link aggregation. Upon detection that a health of a device is above a predetermined threshold, the first device may identify the ports as up.
摘要:
Described herein is a method and system for distributing whole and fragmented requests and responses across a multi-core system. Each core executes a packet engine that further processes data packets and data packet fragments allocated to that core. A flow distributor executing within the multi-core system forwards client requests to a packet engine on a core that is selected based on a value generated when a hash is applied to a tuple comprising a client IP address, a client port, a server IP address and a server port identified in the request. The packet engine maintains each element of the tuple and forwards the request to the selected core. The packet engine can also process data packet fragments by assembling the fragments prior to transmitting them to the selected core, or by transmitting the data packet fragments to the selected core.
摘要:
Described herein is a method and system for distributing whole and fragmented requests and responses across a multi-core system. Each core executes a packet engine that further processes data packets and data packet fragments allocated to that core. A flow distributor executing within the multi-core system forwards client requests to a packet engine on a core that is selected based on a value generated when a hash is applied to a tuple comprising a client IP address, a client port, a server IP address and a server port identified in the request. The packet engine maintains each element of the tuple and forwards the request to the selected core. The packet engine can also process data packet fragments by assembling the fragments prior to transmitting them to the selected core, or by transmitting the data packet fragments to the selected core.
摘要:
Described herein is a method and system for distributing whole and fragmented requests and responses across a multi-core system. Each core executes a packet engine that further processes data packets and data packet fragments allocated to that core. A flow distributor executing within the multi-core system forwards client requests to a packet engine on a core that is selected based on a value generated when a hash is applied to a tuple comprising a client IP address, a client port, a server IP address and a server port identified in the request. The packet engine maintains each element of the tuple and forwards the request to the selected core. The packet engine can also process data packet fragments by assembling the fragments prior to transmitting them to the selected core, or by transmitting the data packet fragments to the selected core.
摘要:
The present invention is directed towards systems and methods for determining failure in and controlling access to a shared resource in a multi-core system. In some embodiments of a multi-core system, individual cores may share the same resource. Additionally, the resource may occasionally fail or need to be reset, and the period during which the resource is being reset may be non-instantaneous. In an embodiment without coordination between the cores, one core experiencing a failure may reset the resource. During the period in which the resource is resetting, another core may interpret the reset as a failure and reset the resource. As more cores interpret the resets as failures, they will trigger resets, quickly resulting in the resource being constantly reset and unavailable. Thus, in some embodiments, a coordination system may be utilized to determine failure of a shared resource and control resets and access to the shared resource.
摘要:
The present disclosure presents systems and methods for controlling network traffic traversing an intermediary device based on a license or a permit granted for the intermediary device. The systems and methods control a rate of a traffic of a device in accordance with a rate limit identified by a rate limiting license. A rate limiting manager of an intermediary device that processes network traffic between a plurality of clients and a plurality of servers, may identify presence of a rate limiting license that further identifies a performance level. The rate limiting manager may establish a rate limit based on the performance level of the rate limiting license. A throttler of the intermediary may control a rate of receiving network packets in accordance with the rate limit.
摘要:
The present application is directed towards systems and methods for coordination and management of a shared resource in a multi-core system. In a multi-core system, multiple cores may be utilizing a shared resource. However, internal resources common to the shared resource may need to be initialized by only one core, and independent and uncoordinated initialization by multiple cores may cause errors. The present invention provides systems and methods for coordinating such initialization and use through a handshaking protocol.
摘要:
The present disclosure presents systems and methods for controlling network traffic traversing an intermediary device based on a license or a permit granted for the intermediary device. The systems and methods control a rate of a traffic of a device in accordance with a rate limit identified by a rate limiting license. A rate limiting manager of an intermediary device that processes network traffic between a plurality of clients and a plurality of servers, may identify presence of a rate limiting license that further identifies a performance level. The rate limiting manager may establish a rate limit based on the performance level of the rate limiting license. A throttler of the intermediary may control a rate of receiving network packets in accordance with the rate limit.