Abstract:
A partial response decision feedback equalizer (PrDFE) includes a receiver including at least first and second comparators operative to compare an input signal representing a sequence of symbols against respective thresholds and to respectively generate first and second receiver outputs. A first selection stage is provided to select (a) between the first comparator output and a first resolved symbol according to a first timing signal, and (b) between the second comparator output and the first resolved symbol according to the first timing signal, to produce respective first and second selection outputs. A second selection stage selects between the first and second selection outputs according to a selection signal. The selection signal is dependent on a prior resolved symbol that precedes the first resolved symbol in the sequence.
Abstract:
A decision feedback equalizer is calibrated to compensate for estimated inter-symbol interference in a received signal and offsets of sampling devices. The decision feedback equalizer is configured so that an output signal of a sampling circuit represents a comparison between an input signal and a reference of the sampling circuit under calibration. An input signal is received over a communication channel that includes a predetermined pattern. The predetermined pattern is compared to the output signal to determine an adjusted reference for configuring the sampling circuit that accounts for both offset and inter-symbol interference effects.
Abstract:
A partial response decision feedback equalizer (PrDFE) includes a receiver including at least first and second comparators operative to compare an input signal representing a sequence of symbols against respective thresholds and to respectively generate first and second receiver outputs. A first selection stage is provided to select (a) between the first comparator output and a first resolved symbol according to a first timing signal, and (b) between the second comparator output and the first resolved symbol according to the first timing signal, to produce respective first and second selection outputs. A second selection stage selects between the first and second selection outputs according to a selection signal. The selection signal is dependent on a prior resolved symbol that precedes the first resolved symbol in the sequence.
Abstract:
Embodiments of a circuit are described. In this circuit, a modulation circuit provides a first modulated electrical signal and a second modulated electrical signal, where a given modulated electrical signal, which can be either the first modulated electrical signal or the second modulated electrical signal, includes minimum-shift keying (MSK) modulated data. Moreover, a first phase-adjustment element, which is coupled to the modulation circuit, sets a relative phase between the first modulated electrical signal and the second modulated electrical signal based on a phase value of the first phase-adjustment element. Additionally, an output interface, which is coupled to the first phase-adjustment element, is coupled to one or more antenna elements which output signals. These signals include a quadrature phase-shift-keying (QPSK) signal corresponding to the first modulated electrical signal and the second modulated electrical signal.
Abstract:
A multi-phase partial response equalizer circuit includes sampler circuits that sample an input signal to generate sampled signals in response to sampling clock signals having different phases. A first multiplexer circuit selects one of the sampled signals as a first sampled bit to represent the input signal. A first storage circuit coupled to an output of the first multiplexer circuit stores the first sampled bit in response to a first clock signal. A second multiplexer circuit selects one of the sampled signals as a second sampled bit to represent the input signal based on the first sampled bit. A second storage circuit stores a sampled bit selected from the sampled signals in response to a second clock signal. A time period between the second storage circuit storing a sampled bit and the first storage circuit storing the first sampled bit is substantially greater than a unit interval in the input signal.
Abstract:
A multi-phase partial response equalizer circuit includes sampler circuits that sample an input signal to generate sampled signals in response to sampling clock signals having different phases. A first multiplexer circuit selects one of the sampled signals as a first sampled bit to represent the input signal. A first storage circuit coupled to an output of the first multiplexer circuit stores the first sampled bit in response to a first clock signal. A second multiplexer circuit selects one of the sampled signals as a second sampled bit to represent the input signal based on the first sampled bit. A second storage circuit stores a sampled bit selected from the sampled signals in response to a second clock signal. A time period between the second storage circuit storing a sampled bit and the first storage circuit storing the first sampled bit is substantially greater than a unit interval in the input signal.
Abstract:
A multi-phase partial response equalizer circuit includes sampler circuits that sample an input signal to generate sampled signals in response to sampling clock signals having different phases. A first multiplexer circuit selects one of the sampled signals as a first sampled bit to represent the input signal. A first storage circuit coupled to an output of the first multiplexer circuit stores the first sampled bit in response to a first clock signal. A second multiplexer circuit selects one of the sampled signals as a second sampled bit to represent the input signal based on the first sampled bit. A second storage circuit stores a sampled bit selected from the sampled signals in response to a second clock signal. A time period between the second storage circuit storing a sampled bit and the first storage circuit storing the first sampled bit is substantially greater than a unit interval in the input signal.
Abstract:
A circuit, wherein an encoder circuit encodes a set of N symbols as a given codeword in a code space, where the given codeword includes a set of M symbols. M drivers are coupled to the encoder circuit and are coupled to M links in a channel, where a given driver outputs a given symbol in the set of M symbols onto a given link. An error-detection circuit coupled to the encoder circuit generates and stores error-detection information associated with the set of M symbols, facilitating subsequent probabilistic determination of a type of error during communication of the set of M symbols to another circuit. A receiver circuit receives feedback information from the other circuit, which includes error information about detection of another type of error in the set of M symbols based on characteristics of the code space. Control logic performs remedial action based on the feedback information.
Abstract:
A multi-phase partial response equalizer circuit includes sampler circuits that sample an input signal to generate sampled signals in response to sampling clock signals having different phases. A first multiplexer circuit selects one of the sampled signals as a first sampled bit to represent the input signal. A first storage circuit coupled to an output of the first multiplexer circuit stores the first sampled bit in response to a first clock signal. A second multiplexer circuit selects one of the sampled signals as a second sampled bit to represent the input signal based on the first sampled bit. A second storage circuit stores a sampled bit selected from the sampled signals in response to a second clock signal. A time period between the second storage circuit storing a sampled bit and the first storage circuit storing the first sampled bit is substantially greater than a unit interval in the input signal.
Abstract:
A partial response decision feedback equalizer (PrDFE) includes a receiver including at least first and second comparators operative to compare an input signal representing a sequence of symbols against respective thresholds and to respectively generate first and second receiver outputs. A first selection stage is provided to select (a) between the first comparator output and a first resolved symbol according to a first timing signal, and (b) between the second comparator output and the first resolved symbol according to the first timing signal, to produce respective first and second selection outputs. A second selection stage selects between the first and second selection outputs according to a selection signal. The selection signal is dependent on a prior resolved symbol that precedes the first resolved symbol in the sequence.