摘要:
A process is provided for preparing a carrier which process comprises incorporating into the carrier at any stage of the carrier preparation a strength-enhancing additive. Also provided is the resultant carrier having incorporated therein a strength-enhancing additive and a catalyst comprising the carrier. Also provided is a process for the epoxidation of an olefin employing the catalyst. Also provided is a method of using the olefin oxide so produced for making a 1,2-diol, a 1,2-diol ether or an alkanolamine.
摘要:
A process is provided for preparing a carrier which process comprises incorporating into the carrier at any stage of the carrier preparation a strength-enhancing additive. Also provided is the resultant carrier having incorporated therein a strength-enhancing additive and a catalyst comprising the carrier. Also provided is a process for the epoxidation of an olefin employing the catalyst. Also provided is a method of using the olefin oxide so produced for making a 1,2-diol, a 1,2-diol ether or an alkanolamine.
摘要:
The invention provides a process for the epoxidation of an olefin, which process comprises reacting a feed comprising an olefin and oxygen in the presence of a catalyst comprising a carrier and silver deposited on the carrier, which carrier comprises at least 85 weight percent α-alumina and has a surface area of at least 1.3 m2/g, a median pore diameter of more than 0.8 μm, and a pore size distribution wherein at least 80% of the total pore volume is contained in pores with diameters in the range of from 0.1 to 10 μm and at least 80% of the pore volume contained in the pores with diameters in the range of from 0.1 to 10 μm is contained in pores with diameters in the range of from 0.3 to 10 μm.
摘要:
A catalyst which comprises a carrier and silver deposited on the carrier, which carrier has a surface area of at least 1.3 m2/g, a median pore diameter of more than 0.8 μm, and a pore size distribution wherein at least 80% of the total pore volume is contained in pores with diameters in the range of from 0.1 to 10 μm and at least 80% of the pore volume contained in the pores with diameters in the range of from 0.1 to 10 μm is contained in pores with diameters in the range of from 0.3 to 10 μm; process for the preparation of a catalyst which process comprises depositing silver on a carrier, wherein the carrier has been obtained by a method which comprises forming a mixture comprising: a) from 50 to 95 weight percent of a first particulate a-alumina having a median particle size (d50) of from 5 to 100 μm; b) from 5 to 50 weight percent of a second particulate a-alumina having a d50 which is less than the d50 of the first particulate a-alumina and which is in the range of from 1 to 10 μm; and c) an alkaline earth metal silicate bond material; weight percent being based on the total weight of a-alumina in the mixture; and firing the mixture to form the carrier; a process for the epoxidation of an olefin, which process comprises reacting a feed comprising an olefin and oxygen in the presence of a said catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether or an alkanolamine.
摘要:
The present disclosure provides processes for the start-up of an ethylene epoxidation process comprising: a. contacting a high selectivity epoxidation catalyst with a feed comprising ethylene, oxygen and an organic chloride for a period of time such that vinyl chloride is produced and capable of being detected in a reactor outlet stream or a recycle gas loop; b. increasing the temperature of the high selectivity epoxidation catalyst to at least about 220° C.; c. subsequently reducing the level of organic chloride in the feed over a period of from about 12 to about 36 hours so as to increase the temperature of the catalyst to a temperature of from about 250° C. to about 265° C.; and d. subsequently adjusting the level of organic chloride in the feed to a value sufficient to produce ethylene oxide at a substantially optimum selectivity at a temperature of from about 250° C. to about 265° C.
摘要:
A process for the production of an olefin oxide, which process comprises reacting a feed comprising an olefin and oxygen in a reactor tube in the presence of a silver-containing catalyst, wherein the presence of water in the catalyst bed is controlled such that the ratio of the partial pressure of water (PPH2O) divided by the vapor pressure of water (VPH2O) is less than 0.006, preferably less than 0.004.