System and method for predicting component failures in large systems
    1.
    发明授权
    System and method for predicting component failures in large systems 有权
    用于预测大型系统中组件故障的系统和方法

    公开(公告)号:US07103509B2

    公开(公告)日:2006-09-05

    申请号:US10995981

    申请日:2004-11-23

    IPC分类号: G06F15/00

    CPC分类号: G01D3/08 G01D1/00

    摘要: A method for predicting a time to failure of a component in a system is presented. The method comprises obtaining a set of data measurements related to the component. The set of data measurements are representative of a plurality of parameters including a plurality of leading parameters. The method comprises generating a prediction model based upon the leading parameters considered in combination. The prediction model is then used to predict the time to failure of the component based on a set of real-time measurements, wherein the plurality of parameters are processed to predict the time to failure for the component. Finally, a confidence level for the predicted time to failure is determined based upon the plurality of parameters.

    摘要翻译: 提出了一种用于预测系统中组件故障时间的方法。 该方法包括获得与该组件相关的一组数据测量。 数据测量集合代表包括多个前导参数的多个参数。 该方法包括基于组合考虑的前导参数生成预测模型。 然后,预测模型用于基于一组实时测量来预测组件的故障时间,其中处理多个参数以预测组件的故障时间。 最后,基于多个参数确定预测的故障时间的置信水平。

    Complex system diagnostic service model selection method and apparatus
    3.
    发明授权
    Complex system diagnostic service model selection method and apparatus 有权
    复杂系统诊断服务模型选择方法和装置

    公开(公告)号:US07254747B2

    公开(公告)日:2007-08-07

    申请号:US10402874

    申请日:2003-03-28

    IPC分类号: G06F11/00

    摘要: A technique is provided for selecting among a plurality of service models for addressing serviceable events and faults in a complex machine system. Indicators established for each of the models serve as the basis for comparison to input data acquired from the complex system or from manual or semi-automated data acquisition methods. Based upon the comparisons, and upon flexible selection criteria, one or more of the service models is selected to most efficiently address the most likely root cause of the serviceable event or fault.

    摘要翻译: 提供了一种用于在复杂机器系统中的多个服务模型之间进行选择以寻址可服务事件和故障的技术。 为每个模型建立的指标作为与从复杂系统或手动或半自动数据采集方法获取的输入数据进行比较的基础。 基于比较,并且根据灵活的选择标准,选择一个或多个服务模型以最有效地解决可服务事件或故障的最可能的根本原因。

    Optimizing storage and retrieval of monitoring data
    4.
    发明授权
    Optimizing storage and retrieval of monitoring data 有权
    优化监控数据的存储和检索

    公开(公告)号:US06964040B2

    公开(公告)日:2005-11-08

    申请号:US09681702

    申请日:2001-05-23

    申请人: Mark David Osborn

    发明人: Mark David Osborn

    IPC分类号: G06F17/30 G06F9/45

    CPC分类号: G06F17/30324 G06F17/3061

    摘要: Optimizing storage and retrieval of monitoring data. In one aspect of this disclosure, there is a system, method and computer readable medium that stores instructions for instructing a computer system, to optimize storage and retrieval of data. In this embodiment, a transfer manager component acquires the data from an archive and assigns predetermined storage values to specified parameters that form the data structure of the acquired data. A database stores the data acquired by the transfer manager component in accordance with the predetermined storage values. A middle tier component extracts the data in the database and interpolates the data in accordance with the predetermined storage values.

    摘要翻译: 优化监控数据的存储和检索。 在本公开的一个方面,存在一种系统,方法和计算机可读介质,其存储用于指示计算机系统的指令,以优化数据的存储和检索。 在本实施例中,传送管理器组件从归档获取数据,并将预定的存储值分配给形成所获取数据的数据结构的指定参数。 数据库根据预定的存储值存储由传送管理器组件获取的数据。 中间层组件提取数据库中的数据,并根据预定的存储值内插数据。

    Heat exchanger performance monitoring and analysis method and system
    5.
    发明授权
    Heat exchanger performance monitoring and analysis method and system 有权
    换热器性能监测与分析方法与系统

    公开(公告)号:US07455099B2

    公开(公告)日:2008-11-25

    申请号:US10879459

    申请日:2004-06-29

    IPC分类号: G01B3/44 G01B3/52

    CPC分类号: F28F27/00 F28F19/00

    摘要: A technique is disclosed for evaluating and monitoring performance of a heat exchanger system. Operating parameters of the system are monitored and fouling factors for heat transfer surfaces of the exchanger are determined. Trending of fouling may be performed over time based upon the fouling factors, and a model of fouling may be selected from known sets of models, or a model may be developed or refined. Fluid treatment, such as water treatment regimes may be taken into account in evaluation of fouling. An automated knowledge based analysis algorithm may diagnose possible caused of fouling based upon sensed and observed parameters and conditions. Corrective actions may be suggested and the system controlled to reduce, avoid or correct for detected fouling.

    摘要翻译: 公开了一种用于评估和监测热交换器系统性能的技术。 监测系统的工作参数,确定交换器传热面的污垢因子。 可以基于污垢因素随时间推移污染的趋势,并且可以从已知的一组模型中选择污垢模型,或者可以开发或改进模型。 在评估污垢时可以考虑流体处理,如水处理方案。 基于自动知识的分析算法可以基于感测和观察到的参数和条件来诊断可能导致的结垢。 可能会建议纠正措施,系统控制以减少,避免或纠正检测到的结垢。

    Method and system for hierarchical fault classification and diagnosis in large systems
    6.
    发明授权
    Method and system for hierarchical fault classification and diagnosis in large systems 有权
    大型系统中分层故障分类与诊断的方法与系统

    公开(公告)号:US07379799B2

    公开(公告)日:2008-05-27

    申请号:US11171961

    申请日:2005-06-29

    IPC分类号: G01M17/00

    CPC分类号: G06N7/005 G06N5/02

    摘要: A method for diagnosing and classifying faults in a system is provided. The method comprises acquiring operational data for at least one of a system, one or more subsystems of the system or one or more components of the one or more subsystems. Then, the method comprises analyzing the operational data using one or more diagnostic models. Each diagnostic model uses the operational data to determine a probability of fault associated with at least one of the one or more components or the one or more subsystems. Finally, the method comprises deriving an overall probability of fault for at least one of the system, the one or more subsystems, or the one or more components using the one or more probabilities of fault determined by the one or more diagnostic models and one or more hierarchical relationships between the subsystems and components of the system.

    摘要翻译: 提供了一种用于诊断和分类系统故障的方法。 该方法包括获取系统,系统的一个或多个子系统或一个或多个子系统的一个或多个组件中的至少一个的操作数据。 然后,该方法包括使用一个或多个诊断模型分析操作数据。 每个诊断模型使用操作数据来确定与一个或多个组件或一个或多个子系统中的至少一个相关联的故障概率。 最后,该方法包括使用由一个或多个诊断模型确定的故障的一个或多个概率导出系统,一个或多个子系统或一个或多个组件中的至少一个子系统的整体故障概率, 子系统和系统组件之间的更多层次关系。

    METHOD AND SYSTEM FOR DIAGNOSING FAULTS IN A PARTICULAR DEVICE WITHIN A FLEET OF DEVICES
    7.
    发明申请
    METHOD AND SYSTEM FOR DIAGNOSING FAULTS IN A PARTICULAR DEVICE WITHIN A FLEET OF DEVICES 有权
    用于诊断设备中的特定设备中的故障的方法和系统

    公开(公告)号:US20080243328A1

    公开(公告)日:2008-10-02

    申请号:US11695350

    申请日:2007-04-02

    IPC分类号: G06F19/00

    CPC分类号: G05B23/0232

    摘要: A method for diagnosing faults in a particular device within a fleet of devices is provided. The method comprises receiving performance data related to one or more parameters associated with a fleet of devices and processing the performance data to detect one or more trend shifts in the one or more parameters. The method then comprises detrending the one or more parameters to derive noise-adjusted performance data related to a particular parameter associated with a particular device. The method further comprises generating a fleet-based diagnostic model based on trend patterns and data characteristics associated with the fleet of devices. The fleet-based diagnostic model comprises one or more fuzzy rules defining one or more expected trend shift data ranges for the one or more parameters associated with the fleet of devices. The method then comprises computing one or more scaling factors for the particular parameter associated with the particular device and scaling the one or more of fuzzy rules defined for the one or more parameters in the fleet-based diagnostic model, based on the one or more scaling factors, to generate a personalized diagnostic model for the particular parameter associated with the particular device. The method finally comprises evaluating the personalized diagnostic model against the one or more trend shifts detected for the one or more parameters, to diagnose a fault associated with the particular device.

    摘要翻译: 提供了用于诊断设备队列内的特定设备中的故障的方法。 所述方法包括接收与一组或多个参数相关联的性能数据,并且处理所述性能数据以检测所述一个或多个参数中的一个或多个趋势变化。 该方法然后包括去除一个或多个参数以导出与特定设备相关联的特定参数相关的噪声调整的性能数据。 该方法还包括基于与设备队列相关联的趋势模式和数据特征来生成基于车队的诊断模型。 基于车队的诊断模型包括一个或多个模糊规则,其定义与所述设备队列相关联的一个或多个参数的一个或多个预期趋势移位数据范围。 该方法然后包括计算用于与特定设备相关联的特定参数的一个或多个缩放因子,并且基于一个或多个缩放比例缩放为基于车队的诊断模型中的一个或多个参数定义的模糊规则中的一个或多个 因素,为与特定设备相关联的特定参数生成个性化诊断模型。 该方法最终包括针对针对一个或多个参数检测到的一个或多个趋势偏移来评估个性化诊断模型,以诊断与特定装置相关联的故障。