Abstract:
Exemplary embodiments of the invention include a request received to change a TX output power setting or a frequency channel setting. In response, the requested TX output power setting is used to generate a TX output signal in the proper frequency channel. Handset circuitry makes OOB power measurements, the results of which are used to determine a VCC2 setting. The VCC2 setting is a setting that results in an MPS requirement just being met. The VCC2 setting is stored in association with the TX output power and frequency channel setting. The determined VCC2 setting is also used to set the VCC2 supply voltage for the power amplifier. Once set, VCC2 remains fixed until the next request. Each individual handset uses this Adaptive Average Power Tracking (AAPT) method, thereby reducing its VCC2 voltage during operation and conserving power. Because each handset uses AAPT, factory calibration to account for unit-to-unit variations in transmitter circuitry performance is avoided.
Abstract:
An environmental simulator for use in the testing of wireless devices comprises a base station simulator, a signal manipulator, a switch and an antenna array. The environmental simulator is configured to couple wireless signals to and from a device under test in order to test the performance of the device over a variety of real world operating conditions.
Abstract:
Exemplary embodiments of the invention include a request received to change a TX output power setting or a frequency channel setting. In response, the requested TX output power setting is used to generate a TX output signal in the proper frequency channel. Handset circuitry makes OOB power measurements, the results of which are used to determine a VCC2 setting. The VCC2 setting is a setting that results in an MPS requirement just being met. The VCC2 setting is stored in association with the TX output power and frequency channel setting. The determined VCC2 setting is also used to set the VCC2 supply voltage for the power amplifier. Once set, VCC2 remains fixed until the next request. Each individual handset uses this Adaptive Average Power Tracking (AAPT) method, thereby reducing its VCC2 voltage during operation and conserving power. Because each handset uses AAPT, factory calibration to account for unit-to-unit variations in transmitter circuitry performance is avoided.
Abstract:
A balanced dipole antenna for a mobile phone comprises a radiator element and a counterpoise, both formed of a conducting material. The counterpoise is electrically isolated from the ground plane of a printed wire board (PWB) of the mobile phone. A matching network, for example, a balun, provides balanced current to the dipole antenna, resulting in a symmetric radiation pattern. The balanced dipole antenna allows superior performance over conventional antennas found in mobile phones today by enabling a user of a mobile phone to communicate effectively and uniformly in all directions, that is, 360 degrees.
Abstract:
A selectively coupled two-piece antenna for use in a mobile phone having a casing and radio frequency (RF) communications circuitry includes a composite radiator that is selectively extendable from and retractable into the casing and a communications interface that is connected to the RF communications circuitry. The composite radiator has first and second radiating elements, and a connecting element. When the composite radiator is extended, the connecting element connects the first and second radiating elements. In this position, the communications interface connects the RF communications circuitry to the first and second radiating elements. Thus, the RF communications circuitry transmits and/or receives RF signals through both the first and second radiating elements as a top loaded antenna. However, when the composite radiator is retracted, the connecting element electrically isolates the first and second radiating elements.
Abstract:
An antenna system is installed on a wireless device which is designed to be placed near the ear of a human user. The antenna system has a first antenna configured to transmit and receive signals. The first antenna is located at the end of a boom. The boom rotates so as to displace the first antenna away from the user's head when wireless device is in use in close proximity to the user's head. In one embodiment, the system includes a monopole whip antenna and a switching mechanism to alternatively activate the monopole whip antenna and the first antenna.
Abstract:
A connector interface provides direct connection from a wireless communication device to a coaxial connector. The wireless communication device has a housing with an antenna connector. The antenna connector has a hollow pseudo-cylindrical center providing an opening through the housing. The connector interface has a custom connector comprised of an outer conductive shell, a nonconductive spacer and a ground probe. The outer conductive shell is mounted on the printed circuit board. The nonconductive spacer is disposed within the hollow pseudo-cylindrical center of the outer conductive shell. When the connector interface is connected to the wireless communication device, the outer conductive shell contacts the antenna connector and the ground probe extends through the opening into the housing to connect electrically to a ground potential within the housing.
Abstract:
Systems and techniques for adaptive interference filtering in a communications device are disclosed. The communications device may include a transmitter, a receiver, a duplexer coupled to the transmitter and the receiver, and an adaptive filter disposed between the duplexer and the receiver. A processor may be configured to monitor cross modulation in the receiver between transmitter leakage through the duplexer and a jammer, and adapt the filter to vary its transmit signal rejection as a function of the cross modulation.
Abstract:
A testing chamber is configured to evaluate the accuracy of a wireless communication device under test in a production environment. The configuration of the testing chamber may resemble an enclosed structure having a wall that includes multiple layers. An array of antennas, which serves as a layer of the wall, is strategically positioned within the testing chamber to receive and transmit signals emitted to/from the wireless communication device. Located within the testing chamber is either a stationary or moveable holder to support the wireless communication device. Furthermore, during testing, the forward link and the reverse communication links are monitored by selectively or alternatively adjusting and shifting the phase/amplitude of the antenna of the wireless communication device to mitigate the effects of multi-path fading.
Abstract:
An antenna interface for a wireless communication device is provided which comprises an outer grounded shell and an inner signal shell, separated by an intermediate dielectric shell. Preferably, the interior surface of the inner signal shell is threaded to accept either an antenna securement member, or a test equipment interface connector. With this interface, an antenna can be driven by the inner signal shell, and two-conductor test equipment can be coupled to the wireless communication device via both the inner signal shell and the outer grounded shell.