摘要:
A system for scanning a beam of charged-particles across a target is described which compensates for energy dispersion in the beam. A time-varying magnet with circular pole pieces is used to sweep the beam left to right. Two wedge-shaped magnet dipoles, one on each side of the center line are used to bend the beam parallel to the center line and compensate for beam energy dispersion.
摘要:
In a magnetic deflection system for deflecting a beam of charged particles, through a given beam bending angle at least four beam deflecting stations are serially arranged along the beam path for bending the beam through the beam bending angle .PSI.. Each of the beam bending stations includes a magnet for producing a static magnetic field component of a strength and of a shape so that the beam is deflected free of transverse geometric aberrations of second order. The beam deflection system also includes sextupole magnetic field components of such a strength and location so as to eliminate second order chromatic aberrations of the deflected beam without introducing second order geometric aberrations, whereby a magnetic beam deflection system is provided which is free of both transverse chromatic and geometric aberrations of second order.
摘要:
A first order achromatic magnetic deflection system for use in conjunction with a charged particle accelerator, is realized from a stepped gap manget wherein a charged particle propagated through the system is subject to at least two adjacent homogenous magnetic fields in traversing one-half of a symmetric trajectory through the system.
摘要:
A first order achromatic magnetic deflection system for use in conjunction with a charged particle accelerator is realized from a stepped gap magnet wherein charged particles propagating through the system are subject to at least two adjacent homogeneous magnetic fields in adjacent regions (54 and 56) in traversing one-half of a symmetric trajectory through the system. A quadrupole singlet element Q disposed substantially at the entrance plane of such a symmetric system makes possible the coincidence of the waists of the beam in both the vertical (transverse) and (radial) bending planes.