摘要:
Nonlinear elements can efficiently implement quantum information processing systems such as controlled phase shifters, non-absorbing detectors including parity detectors, quantum subspace projections, non-absorbing Bell state analyzers, non-absorbing encoders/entanglers, and fundamental quantum gates such as CNOT gates. The non-absorbing detectors permit improvements in the efficiency of a probabilistic quantum gate by permitting reuse of the same photonic resources during multiple passes through the probabilistic gate.
摘要:
Various embodiments of the present invention are directed to methods for determining a phase shift acquired by an entangled N-qubit system represented by a NOON state. In one embodiment, a probe electromagnetic field is coupled with each qubit system. The phase shift acquired by the qubit systems is transferred to the probe electromagnetic field by transforming each qubit-system state into a linear superposition of qubit basis states. An intensity measurement is performed on the probe electromagnetic field in order to obtain a corresponding measurement result. A counter associated with a measurement-result interval is incremented, based on the measurement result falling within the measurement-result interval. A frequency distribution is produced by normalizing the counter associated with each measurement-result interval for a number of trials. The phase shift is determined by fitting a probability distribution associated with the probe electromagnetic field to the frequency distribution as a function of the phase shift.
摘要:
Nonlinear electromagnetic elements can efficiently implement quantum information processing tasks such as controlled phase shifts, non-demolition state detection, quantum subspace projections, non-demolition Bell state analysis, heralded state preparation, quantum non-demolition encoding, and fundamental quantum gate operations. Direct use of electromagnetic non-linearity can amplify small phase shifts and use feed forward systems in a near deterministic manner with high operating efficiency. Measurements using homodyne detectors can cause near deterministic projection of input states on a Hilbert subspace identified by the measurement results. Feed forward operation can then alter the projected state if desired to achieve a desired output state with near 100% efficiency.
摘要:
A device capable of efficiently detecting a single-photon signal preserves a photon characteristic such as polarization or angular momentum. The device can include a beam splitter that splits an input photon state into modes that are distinguished by states of a characteristic of signal photons in the input photon state, a non-destructive measurement system capable of measuring a total number of photons in the modes without identifying a photon number for any individual one of the modes; and a beam combiner positioned to combine the modes after output from the non-destructive detection system.
摘要:
A device capable of efficiently detecting a single-photon signal includes a matter system, sources of a first beam and a second beam, and a measurement system. The matter system has a first energy level and a second energy level such that a signal photon couples to a transition between the first energy level and the second energy level. The first beam contains photons that couple to a transition between the second energy level and a third energy level of the matter system, and the second beam contains photons that couple to a transition between the third energy level and a fourth energy level of the matter system. The measurement system measures a change in the first or second beam to detect the absence, the presence, or the number of the photons in the signal.
摘要:
Various embodiments of the present invention are directed to methods for generating an entangled state of qubits. In one embodiment of the present invention, a method for preparing an entangled state of qubits comprises providing a probe and N non-interacting qubits, each qubit comprises a linear superposition of two basis states. The probe is transmitted into an interaction region that separately couples the probe to each of the qubits and produces a number of different probes. A linear superposition of states is output from the interaction region, each state in the linear superposition of states comprises a tensor product of entangled basis states and one of the different probes. The linear superposition of states is projected into one of the entangled states by measuring the state of the probe.
摘要:
Structures and methods allow: transfer of quantum information represented using the states of light to a representation using the states of matter systems; transfer of quantum information represented by the states of matter systems to a representation using the states of light; and error resistant encoding of quantum information using entangled states of matter and light to minimize errors.
摘要:
Systems and methods convert or transfer quantum information from one photonic representation or state to another. This permits conversion of quantum information from one encoding to another and to representations that are convenient, efficient, or required for desired manipulations.
摘要:
Nonlinear elements can efficiently implement quantum information processing systems such as controlled phase shifters, non-absorbing detectors including parity detectors, quantum subspace projections, non-absorbing Bell state analyzers, non-absorbing encoders/entanglers, and fundamental quantum gates such as CNOT gates. The non-absorbing detectors permit improvements in the efficiency of a probabilistic quantum gate by permitting reuse of the same photonic resources during multiple passes through the probabilistic gate.
摘要:
A quantum repeater includes a transmitter portion including a source, a set of matter systems, and an optical system. The source produces a probe pulse in a probe state having components with different photon numbers, and each matter system has at least one state that interacts with photons in the probe pulse to introduce a change in a phase space location of the probe state. The optical system can direct the probe pulse for interaction with one of the matter systems and direct light from the matter system for transmission on a first channel.