摘要:
A photonic interconnect system avoids high capacitance electric interconnects by using optical signals to communicate data between devices. The system can provide massively parallel information output by mapping logical addresses to frequency bands, so that modulation of a selected frequency band can encode information for a specific location corresponding to the logical address. Wavelength-specific directional couplers, modulators, and detectors for the photonic interconnect system can be efficiently fabricated at defects in a photonic bandgap crystal. The interconnect system can be used for both classical and quantum information processing.
摘要:
The states of matter system (110) having only ones basis state that couples to an excited state can be entangled using measurements of photons during transitions from the excited state. High efficiency of entanglement operation can be achieved by repeating the measurements after performing bit flips on the matter systems (110). High efficiency of entanglement operation can be achieved using non-absorbing parity measurements on the emitted photons so that measured photons can be subsequently manipulated and measured to near-deterministically produce entangled states. Such entanglement operations can be employed to construct cluster states suitable for simulating arbitrary logic networks.
摘要:
A quantum random number generator uses measurements of a quantum state to generate a random value and to authenticate that the quantum state had the required properties for generation of a random series having the desired statistics. One exemplary embodiment generates an entangled photon pair in the singlet Bell state, measures one photon to extract a random value, and measures the other photon for confirmation that the photon pair were in the singlet Bell state. Another embodiment of the invention performs tomographic analysis of a state used for random number generation to confirm that the state used had the desired properties.
摘要:
Various embodiments of the present invention are directed to methods for determining a phase shift acquired by an entangled N-qubit system represented by a NOON state. In one embodiment, a probe electromagnetic field is coupled with each qubit system. The phase shift acquired by the qubit systems is transferred to the probe electromagnetic field by transforming each qubit-system state into a linear superposition of qubit basis states. An intensity measurement is performed on the probe electromagnetic field in order to obtain a corresponding measurement result. A counter associated with a measurement-result interval is incremented, based on the measurement result falling within the measurement-result interval. A frequency distribution is produced by normalizing the counter associated with each measurement-result interval for a number of trials. The phase shift is determined by fitting a probability distribution associated with the probe electromagnetic field to the frequency distribution as a function of the phase shift.
摘要:
A photonic interconnect system avoids high capacitance electric interconnects by using optical signals to communicate data between devices. The system can provide massively parallel information output by mapping logical addresses to frequency bands, so that modulation of a selected frequency band can encode information for a specific location corresponding to the logical address. Wavelength-specific directional couplers, modulators, and detectors for the photonic interconnect system can be efficiently fabricated at defects in a photonic bandgap crystal.
摘要:
Nonlinear electromagnetic elements can efficiently implement quantum information processing tasks such as controlled phase shifts, non-demolition state detection, quantum subspace projections, non-demolition Bell state analysis, heralded state preparation, quantum non-demolition encoding, and fundamental quantum gate operations. Direct use of electromagnetic non-linearity can amplify small phase shifts and use feed forward systems in a near deterministic manner with high operating efficiency. Measurements using homodyne detectors can cause near deterministic projection of input states on a Hilbert subspace identified by the measurement results. Feed forward operation can then alter the projected state if desired to achieve a desired output state with near 100% efficiency.
摘要:
A device capable of efficiently detecting a single-photon signal preserves a photon characteristic such as polarization or angular momentum. The device can include a beam splitter that splits an input photon state into modes that are distinguished by states of a characteristic of signal photons in the input photon state, a non-destructive measurement system capable of measuring a total number of photons in the modes without identifying a photon number for any individual one of the modes; and a beam combiner positioned to combine the modes after output from the non-destructive detection system.
摘要:
Quantum information processing structures and methods use photons and four-level matter systems in electromagnetically induced transparency (EIT) arrangements for one and two-qubit quantum gates, two-photon phase shifters, and Bell state measurement devices. For efficient coupling of the matter systems to the photons while decoupling the matter systems from the phonon bath, molecular cages or molecular tethers maintain the atoms within the electromagnetic field of the photon, e.g., in the evanescent field surrounding the core of an optical fiber carrying the photons. To reduce decoherence caused by spontaneous emissions, the matter systems can be embedded in photonic bandgap crystals or the matter systems can be selected to include metastable energy levels.
摘要:
A photonic interconnect method avoids high capacitance electric interconnects by using optical signals to communicate data between devices. The method can provide massively parallel information output by mapping logical addresses to frequency bands, so that modulation of a selected frequency band can encode information for a specific location corresponding to the logical address. Wavelength-specific directional couplers, modulators, and detectors, which can be fabricated at defects in a photonic bandgap crystal, can be employed for the photonic interconnect method. The interconnect method can be used for both classical and quantum information processing.
摘要:
Various embodiments of the present invention are directed to methods and systems for circumventing, and altering transmission-channel users of, transmission-channel disruptions. In one embodiment of the present invention, a source encodes information in a first signal and transmits the first signal in a source channel to a multiplexer. The multiplexer distributes the first signal over N transmission channels. A demultiplexer combines the signals distributed over the N transmission channels into a second signal encoding of the information. The distribution system also includes a detector that receives the second signal output from the demultiplexer, and one or more detectors that receive one or more additional signals output from the demultiplexer. The additional signals are produced by the demultiplexer when a disruption occurs in one or more of the transmission channels and are used to alert transmission-channel users of the disruption.