摘要:
The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.
摘要:
The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the structure of transmembrane proteins such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a combination of coarse grain sampling methods, such as hydrophobicity analysis, followed by coarse grain molecular dynamics and atomic level molecular dynamics, including accurate continuum solvation. Also included are energy optimization to determine the rotation of helices in the (seven-helical) TM bundle, and optimization of the helix translations along their axes and rotational optimization using hydrophobic moment of the helices, to provide a fast and accurate procedure for predicting GPCR tertiary structure.
摘要:
Computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the structure of transmembrane proteins such as G-Protein Coupled Receptors, and protein structural models generated according to the protocol. The protocol features a combination of coarse grain sampling methods, such as hydrophobicity analysis, followed by coarse grain molecular dynamics and atomic level molecular dynamics, including accurate continuum solvation, to provide a fast and accurate procedure for predicting GPCR tertiary structure.
摘要:
The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.
摘要:
The instant invention provides methods and implementing computer software for designing mutant proteins (or “Target Protein or TP”) that will preferentially bind one list of prespecified ligands (Active Ligands or AL) with respect to another list of ligands (The Inactive Ligands or IL).
摘要翻译:本发明提供了用于设计突变蛋白(或“靶蛋白或TP”)的方法并实现计算机软件,该突变蛋白将相对于另一个配体列表优先结合一组预先指定的配体(活性配体或AL)列表(The Inactive Ligands or IL )。