Abstract:
Provided is a semiconductor device with improved performance and production yield. Insulating films IL2 and IL3 are formed over a semiconductor substrate in that order to cover a gate electrode. Then, the insulating films IL3 and IL2 are etched back to form sidewall spacers including the insulating films IL2 and IL3 over sidewalls of the gate electrode. The source/drain region is formed in the semiconductor substrate by ion implantation using the gate electrode and the sidewall spacer as a mask. Then, the sidewall spacers are isotropically etched on conditions where the insulating film IL2 is less likely to be etched than the third insulating film IL3 to thereby decrease the thickness of the sidewall spacer. Thereafter, a reaction layer between the metal and the source/drain region is formed over the source/drain region.
Abstract:
Provided is a semiconductor device with improved performance. In a method for manufacturing a semiconductor device, after forming a gate electrode of a transfer transistor over a p-type well, a photodiode is formed in one part of the p-type well positioned on one side with respect to the gate electrode. Then, a cap insulating film including silicon and nitrogen is formed over the photodiode before implanting impurity ions for formation of an n-type low-concentration semiconductor region of the transfer transistor, into the other part of the p-type well positioned on a side opposite to the one side with respect to the gate electrode.
Abstract:
Provided is a semiconductor device with improved performance. In a method for manufacturing a semiconductor device, after forming a gate electrode of a transfer transistor over a p-type well, a photodiode is formed in one part of the p-type well positioned on one side with respect to the gate electrode. Then, a cap insulating film including silicon and nitrogen is formed over the photodiode before implanting impurity ions for formation of an n-type low-concentration semiconductor region of the transfer transistor, into the other part of the p-type well positioned on a side opposite to the one side with respect to the gate electrode.
Abstract:
An object of the invention is to provide a semiconductor device having less cracking or peeling and a method of manufacturing the same. A fuse portion of a semiconductor device has bit lines electrically coupled to a SRAM memory cell. The bit lines are covered by an interlayer insulating film. As the interlayer insulating film, a boron-doped BPTEOS film is formed. The bit lines have thereabove a fuse. The fuse and the bit lines are electrically coupled to each other via contact plugs. The interlayer insulating film that covers the bit lines therewith is separated from the contact plugs.