Abstract:
Disclosed herein is a method of radio link monitoring (RLM) in a UE comprising the steps of: selecting a control channel type to perform RLM on, wherein the control channel type includes one or more of: a physical downlink control channel (PDCCH); or an enhanced physical downlink control channel (EPDCCH); receiving a transmission on a carrier, the transmission comprising one or more reference signals; and determining the quality of the radio link using the selected control channel type and the one or more reference signals.
Abstract:
Described herein is a network element with a processor. The processor is configured to promote transmitting a first physical resource block (PRB) pair that contains a first demodulation reference signal (DMRS) pattern. The processor is further configured to promote transmitting a second PRB pair that contains a second DMRS pattern. The first DMRS pattern is a subset of the second DMRS pattern.
Abstract:
A method for generating a synchronization signal is provided. The method comprises using a number other than 63 as an NZC value in a Zadoff-Chu sequence used in generating a primary synchronization signal for a wireless communication system, which may be a 3GPP LTE system or a 3GPP LTE-A system.
Abstract:
A system is provided for transmitting a low code rate spatially multiplexed channel on multiple antennas. The system includes a transmitter and a processor. The processor is configured such that the processor encodes a block of information bits to form channel coded bits, wherein the ratio of the number of channel coded bits to the number of information bits is greater than one; and the processor maps the channel coded bits to modulation symbols, and each channel coded bit is mapped once to a modulation symbol. The transmitter is configured to transmit a first portion of the modulation symbols using a spreading sequence on a first antenna of the multiple antennas and to transmit a second portion of the modulation symbols using the spreading sequence on a second antenna of the multiple antennas.
Abstract:
Described herein is a network element with a processor. The processor is configured to promote transmitting a first physical resource block (PRB) pair that contains a first demodulation reference signal (DMRS) pattern. The processor is further configured to promote transmitting a second PRB pair that contains a second DMRS pattern. The first DMRS pattern is a subset of the second DMRS pattern.
Abstract:
Disclosed herein is a method of radio link monitoring (RLM) in a UE comprising the steps of: selecting a control channel type to perform RLM on, wherein the control channel type includes one or more of: a physical downlink control channel (PDCCH); or an enhanced physical downlink control channel (EPDCCH); receiving a transmission on a carrier, the transmission comprising one or more reference signals; and determining the quality of the radio link using the selected control channel type and the one or more reference signals.
Abstract:
A method for communication in a wireless telecommunication network is provided. The method comprises transmitting, by a first cell, to a first UE, a first signal on a resource block configured to be shared by more than one cell; and transmitting, by a second cell, to a second UE, a second signal on the same resource block, wherein a specification of a location of the resource block is included in configuration information available to the first cell and the second cell.
Abstract:
A method for communication in a wireless communications network is provided. The method comprises: transmitting, by a network element in a first cell, a first DMRS on a first DMRS port; transmitting, by the network element, a first PDSCH on the first DMRS port; and transmitting, by the network, information indicating that the first DMRS port is used to transmit the first PDSCH, and information about a second DMRS port that is not used to transmit the first PDSCH but is used to transmit a second DMRS, wherein the first DMRS and the second DMRS are orthogonal to one another.
Abstract:
A method and user equipment for simultaneous transmission of a first set of information bits and a second set of information bits by a user equipment, either separately encoded utilizing transmit power or rate matching to increase successful decoding of a set of information bits, or jointly encoding using a priori knowledge or bit positioning to increase successful decoding. Also, the use of joint coding where a first set of information bits is encoded first and then encoded with a second set of information bits, and modulation symbol mapping are provided.
Abstract:
A method for providing transmit diversity in wireless network communications is presented. An indication of a slot structure is received. The slot structure identifies at least a first location of a reference signal within a slot. A first reference signal is transmitted within a first slot using a first antenna. A location of the first reference signal within the first slot is determined by the slot structure. A second reference signal is transmitted within the first slot using a second antenna. A location of the second reference signal within the first slot is determined by the slot structure. In some cases, the slot structure identifies a second location of a reference signal within the slot structure. The second location being offset from the first location, and a third reference signal is transmitted within the first slot at the second location on the first antenna.