Fluorescent refrigeration
    1.
    发明授权
    Fluorescent refrigeration 失效
    荧光制冷

    公开(公告)号:US5447032A

    公开(公告)日:1995-09-05

    申请号:US230182

    申请日:1994-04-19

    IPC分类号: F25B23/00 F25B21/00

    CPC分类号: F25B23/003 H01S3/0408

    摘要: Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

    摘要翻译: 荧光制冷基于使用基本上单色辐射的量子激发的选择性辐射泵浦,然后将其吸热再分配到更高的能量。 最终,人口上的能量水平辐射地脱离了平均比最初吸收更多的辐射能量。 用于完成冷却的材料必须具有使得激发辐射被强烈吸收的尺寸,但是荧光可以通过明显更小的光程长度离开材料。 光纤和镜面玻璃和晶体提供了这一要求。

    Optical refrigerator using reflectivity tuned dielectric mirrors
    2.
    发明授权
    Optical refrigerator using reflectivity tuned dielectric mirrors 失效
    使用反射率调谐电介质镜的光学冰箱

    公开(公告)号:US6041610A

    公开(公告)日:2000-03-28

    申请号:US289419

    申请日:1999-04-09

    摘要: Optical refrigerator using reflectivity-tuned dielectric mirrors. Selected working materials can be optically pumped using monochromatic radiation such that the resulting fluorescence has an average photon energy higher than that of the pumping radiation; that is, net anti-Stokes fluorescence. If the quantum efficiency is sufficiently high, the working material will cool and optical refrigeration can be achieved. Parallel mirrored faces are employed to increase the optical path of the incident pumping radiation within the working material by multiple reflections. Reflectivity-tuned dielectric mirrors which allow higher-energy fluorescence photons to readily escape from the working material while inhibiting the escape of the lower-energy photons which are consequently partially trapped in the working material and ultimately reabsorbed and refluoresced at higher energies are employed. This increases the optical refrigerator efficiency. An efficient geometry for the cooling material is a disk having a large diameter and a small height, since the fluorescence can predominantly escape through the tuned mirror on one end face of the working material. An alternative cooling element could be approximately cubic with tuned mirrors on the sides as well as on one end. In another embodiment of the invention, photocells are used to convert escaping fluorescence energy into electricity, thereby reducing the power requirements of the optical refrigerator and reducing the amount of waste that must be removed from the vicinity of the working material.

    摘要翻译: 使用反射率调谐电介质镜的光学冰箱。 所选择的工作材料可以使用单色辐射进行光泵浦,使得所得荧光的平均光子能量高于泵浦辐射的平均光子能量; 那就是净反斯托克斯荧光。 如果量子效率足够高,则工作材料将冷却并且可以实现光学制冷。 采用平行镜面以通过多次反射来增加工作材料内的入射泵浦辐射的光路。 反射率调谐的电介质反射镜允许更高能量的荧光光子容易地从工作材料逸出,同时抑制低能量光子的逸出,因此部分地被捕获在工作材料中并且最终在较高能量下被再吸收和反射。 这提高了光学冰箱的效率。 用于冷却材料的有效几何形状是具有大直径和小高度的盘,因为荧光可以主要通过工作材料的一个端面上的调谐反射镜逃逸。 替代的冷却元件可以是近似立方体,在侧面以及一端具有调整的反射镜。 在本发明的另一个实施例中,光电池用于将荧光能量转换成电能,从而降低光学冰箱的功率需求并减少必须从工作材料附近去除的废物量。