摘要:
The present disclosure provides systems and methods for real-time, in-service latency measurements over optical links that may be further integrated within various optical control planes. The present invention may utilize minimal unused overhead to calculate latency of an optical line through a transport network. The present invention utilizes timers at two end-point nodes associated with the optical line, and includes a mechanism to filter out frame skew between the nodes. Advantageously, the present invention provides a highly accurate latency measurement that may calculate latency on links as small as one meter, an in-service algorithm operable without network impact, and may be integrated with an optical control plane to automatically provide administrative weight variables associated with link costs.
摘要:
The present disclosure provides systems and methods for rapid circuit provisioning in Optical Transport Networks (OTN) using signaling and routing protocols thereby enabling fast mesh restoration. The present invention utilizes a shim layer between OTN messaging (e.g., GCC or High-Level Data Link Control (HDLC)) and the associated signaling and routing protocol (e.g., OSRP, GMPLS, etc.). If an ODUk Connection CTP or TTP needs to be created, the shim layer runs a fast “OTN Setup” protocol, while buffering out going OTN messages. Incoming messages are still processed and do not require additional buffering. The purpose of the OTN Setup protocol is to allow the OTUk to re-frame on its client ODUk, while buffering out-going messages. When re-framing completes, buffers are released and the OTN messaging resumes without dropping any of the signaling frames.
摘要:
The present disclosure provides systems and methods for making latency measurements and using these measurements in routing in optical networks. In an exemplary embodiment, a method is defined whereby two nodes sharing a line automatically determine whether both nodes are capable of making a latency measurement and then which node will initiate and which node participates in making the latency measurement. In another exemplary embodiment, an on-demand latency measurement may be made between any two arbitrary nodes within a domain. Routing messages may be used to disseminate the latency of links via a signaling and routing protocol. Advantageously, the present invention provides measurement of latency and latency variation of customer circuits (i.e., SNCs) using an in-band, non-intrusive calculation with a high-degree of accuracy. Furthermore, the present invention may consider these calculations for circuit routing based on the latency and circuit acceptance based on maximum latency restrictions.
摘要:
An Optical Transport Network (OTN) mode management system includes a controller communicatively coupled to at least one OTN port. The controller is configured to operate an OTN line Optical channel Data Unit level k (ODUk) mode management system for the at least one OTN port, and the OTN line ODUk mode management system is configured to support different multiplexing scenarios on the OTN port with no loss of control plane packets on aggregated links. A network element includes at least one port with a plurality of lines associated therewith, a controller communicatively coupled to the at least one port, and an OTN line ODUk mode management system executed on the controller for managing the plurality of lines on the at least one port. A method includes configuring and dynamically managing modes of a plurality of OTN lines in a link.
摘要:
The present disclosure provides systems and methods for making latency measurements and using these measurements in routing in optical networks. In an exemplary embodiment, a method is defined whereby two nodes sharing a line automatically determine whether both nodes are capable of making a latency measurement and then which node will initiate and which node participates in making the latency measurement. In another exemplary embodiment, an on-demand latency measurement may be made between any two arbitrary nodes within a domain. Routing messages may be used to disseminate the latency of links via a signaling and routing protocol. Advantageously, the present invention provides measurement of latency and latency variation of customer circuits (i.e., SNCs) using an in-band, non-intrusive calculation with a high-degree of accuracy. Furthermore, the present invention may consider these calculations for circuit routing based on the latency and circuit acceptance based on maximum latency restrictions.
摘要:
A switch element is configured to extend communications between data lines. The switch element includes a set of ingress devices, a set of center stage devices, and a set of egress devices. Each center stage device is connectable to each ingress device and to each egress device. Each ingress device connects to a corresponding egress device across one of the center stage devices. The center stage switch can be selectively actuated to accommodate a new ingress or egress device across the center stage switch.