Abstract:
A control circuit for controlling a stackable multiphase power converter includes: a synchronization terminal; a synchronization signal connected to the synchronization terminals of a plurality of the control circuits in parallel, wherein the synchronization signal includes a plurality of pulses to be successively counted as a count number; and a reset signal, configured to reset and initiate the count number; wherein the control circuit further comprises a phase-sequence number, wherein the control circuit enables a corresponding power stage circuit to generate a phase of the output power when the count number reaches the phase-sequence number.
Abstract:
A scalable multi-phase switching converter includes: converter modules, each including: a loop control unit, which generates a basic trigger pulse according to a feedback signal in master operation mode; and a switching control unit, which determines an operation mode and a corresponding phase serial order according to a setting signal received by a setting pin in a setting mode, and generates a multi-phase trigger pulse signal at a trigger pin according to the basic trigger pulse in master operation mode. The switching control unit receives the multi-phase trigger pulse signal at the trigger pin in slave operation mode. The switching control unit generates an ON-trigger pulse according to the multi-phase trigger pulse signal and the corresponding phase serial order. An ON-period determination unit generates a conduction control pulse according to the ON-trigger pulse to control a corresponding inductor. The trigger pins of the converter modules are coupled to each other.
Abstract:
A control circuit of a switching regulator includes a control pin for coupling with an external resistor; a resistor detecting circuit for detecting a resistance of the external resistor; a current generating module for generating a corresponding control current according to a detection result of the resistor detecting circuit; an oscillating circuit for generating a clock signal; and a mode-switching circuit. When the mode-switching circuit configures the oscillating circuit to operate in a resistor-controlled mode, the oscillating circuit generates the clock signal according to the control current so that the clock signal has a frequency corresponding to the resistance of the external resistor. When the mode-switching circuit configures the oscillating circuit to operate in a signal-controlled mode, the oscillating circuit generates the clock signal according to an external synchronous signal coupled with the control pin so that the clock signal is synchronized with the external synchronous signal.
Abstract:
A switching converter includes: a power stage circuit including at least one switch to switch an inductor to convert an input power to an output power; a modulation circuit executing a pulse width modulation according to a feedback signal related to the output power and a reference signal to generate a modulation trigger signal; a time calculation circuit generating a pulse width modulation (PWM) signal according to the modulation trigger signal to control the at least one switch and computing an ON-time or an OFF-time of the PWM signal; and a time adjustment circuit generating a time adjustment signal according to a first clock signal related to the PWM signal, wherein the time adjustment signal adjusts the ON-time or OFF-time in a random or a pseudo-random fashion, so as to suppress a noise resulting from a switching frequency of the PWM signal.
Abstract:
A scalable multi-phase switching converter includes: converter modules, each including: a loop control unit, which generates a basic trigger pulse according to a feedback signal in master operation mode; and a switching control unit, which determines an operation mode and a corresponding phase serial order according to a setting signal received by a setting pin in a setting mode, and generates a multi-phase trigger pulse signal at a trigger pin according to the basic trigger pulse in master operation mode. The switching control unit receives the multi-phase trigger pulse signal at the trigger pin in slave operation mode. The switching control unit generates an ON-trigger pulse according to the multi-phase trigger pulse signal and the corresponding phase serial order. An ON-period determination unit generates a conduction control pulse according to the ON-trigger pulse to control a corresponding inductor. The trigger pins of the converter modules are coupled to each other.
Abstract:
A control circuit for controlling a stackable multiphase power converter includes: a synchronization terminal; a synchronization signal connected to the synchronization terminals of a plurality of the control circuits in parallel, wherein the synchronization signal includes a plurality of pulses to be successively counted as a count number; and a reset signal, configured to reset and initiate the count number; wherein the control circuit further comprises a phase-sequence number, wherein the control circuit enables a corresponding power stage circuit to generate a phase of the output power when the count number reaches the phase-sequence number.