摘要:
The speed dependent variable display system for a computer-implemented moving-map vehicle display system includes a data conversion module for converting a vehicle speed input signal to a distance range value; and, an application module for utilizing the distance range value, vehicle position information, vehicle direction of movement information, and input geographical information to provide scaled output geographical information. The scaled output geographical information is utilized to provide a situational awareness display which is optimized in accordance with the vehicle's position, direction of movement and speed. A display apparatus receives the scaled output geographical information to provide an optimized situational awareness display for a moving-map vehicle display system.
摘要:
A database defining at least one exclusion zone of airport is described. The database includes a computer-implemented memory configured to store and allow retrieval of a plurality of points, the points defining a boundary of an exclusion zone associated with an airport, the area being prohibited for aircraft travel.
摘要:
A head-up display (HUD) is disclosed. The HUD is provided on board an aircraft. The HUD comprises a projector and a combiner. The combiner enables viewing of the world outside of the combiner and also allows viewing of information provided from the projector. A computer is coupled to the projector and provides airport runway and taxiway symbols conformally mapped onto the combiner. Also provided on the combiner is a mapping of automatic dependent surveillance broadcast advisory information and traffic onto the combiner.
摘要:
A head-up display (HUD) is disclosed. The HUD is provided on board an aircraft. The HUD comprises a projector and a combiner. The combiner enables viewing of the world outside of the combiner and also allows viewing of information provided from the projector. A computer is coupled to the projector and provides airport runway and taxiway symbols conformally mapped onto the combiner. Also provided on the combiner is a mapping of hold lines onto the combiner.
摘要:
A head-up display (HUD) is disclosed. The HUD is provided on board an aircraft. The HUD comprises a projector and a combiner. The combiner enables viewing of the world outside of the combiner and also allows viewing of information provided from the projector. A computer is coupled to the projector and provides airport runway and taxiway symbols conformally mapped onto the combiner. Also provided on the combiner is a mapping of virtual airport signs onto the combiner.
摘要:
The present invention is a method and system of aircraft surface operations guidance on a head up display. An aircraft surface operations guidance method includes the following steps. At time t1, a taxi guidance cue and a trend vector are displayed on a head up display of an aircraft. The taxi guidance cue represents a desired position of an aircraft control point of the aircraft at time t2. The trend vector represents a predicted path of the aircraft control point from time t1 to time t2 based on a state of the aircraft at time t1. The trend vector includes a tip representing a predicted position of the aircraft control point at time t2. The tip is maintained within the taxi guidance cue so that the aircraft control point may reach the desired position at time t2.
摘要:
The embodiments disclosed herein present novel and non-trivial system, module, and method for creating a variable FOV image presented on a HUD combiner unit. A processor receives navigation system data and data associated with eye position. A variable FOV image data set representative of navigation symbology is generated, where the image data set is determined by applying the navigation system and eye position data to an adaptive FOV function, where the function correlates eye position to an FOV image. The image data set is presented to a HUD system where an image represented in the image data set is displayed on a combiner unit, whereby the image FOV correlates to eye position. Furthermore, the processor may receive terrain data and generate a variable FOV image data set inclusive of data representative of a three-dimensional perspective scene outside an aircraft.
摘要:
A method for monitoring inactive pixels in a scene imaging system may include determining a location of at least one inactive pixel in a focal plane array. The method may include sensing an environment image based upon a surrounding environment of an aircraft. The method may include generating an image associated with the environment image. The method may include evaluating a location for one or more inactive pixels in the generated image in comparison to a location for the at least one inactive pixel in the focal plane array. The method may include determining whether a fault exists in image generation or image display based upon the evaluation.
摘要:
A method of controlling a see-through display includes receiving a sensor signal. The sensor signal provides a representation of an image associated with a view of an outside scene. The method also includes receiving a video frame having pixels. Each of the pixels has a color and intensity. The method further includes changing the color or the intensity of selected pixels of the pixels in response to the sensor signal on a zonal or pixel basis.
摘要:
An aircraft optical display system for implementing an enhanced vision system based on weather conditions is described. The display system includes a plurality of imaging sensors configured to receive imaging input data and generate image data, where each imaging sensor is associated with one or more weather conditions. The system further includes a weather conditions input device configured to receive current weather condition information and a weather dependent imaging system configured to receive the current weather conditions information and to select one or more of the plurality of imaging sensors to provide imaging input data in accordance with the current weather conditions information.