摘要:
A method of forming a substrate is performed by grinding a substrate using abrasives so that both major surfaces of the substrate achieve desired flatness, smoothness, or both. In an embodiment, a coarser abrasive is used to grind one major surface, while a finer abrasive is simultaneously used to grind the other major surface. A single grinding step can used to produce a substrate having opposing surfaces of different surface roughnesses. This may help to eliminate a typical second downstream fine polishing step used in the prior art. Embodiments can be used with a wide variety of substrates, including sapphire, silicon carbide and gallium nitride single crystal structures grown by various techniques.
摘要:
Various embodiments of the invention include a power management unit (PMU) to simultaneously control the production of hydrogen and electricity for external use in an MFC-MEC coupled system. In one embodiment, the PMU includes low voltage electronic switches using MOSFETs, and a PWM controller. The PWM controller creates timing waveform necessary to operate the switches. In other embodiments, the switches can be replaced by any switching regulator capable of operating at low operating voltage and currents that yield high efficiency. Such a system can be used in a waste-water treatment facility.
摘要:
Various embodiments of the invention include a power management unit (PMU) to simultaneously control the production of hydrogen and electricity for external use in an MFC-MEC coupled system. In one embodiment, the PMU includes low voltage electronic switches using MOSFETs, and a PWM controller. The PWM controller creates timing waveform necessary to operate the switches. In other embodiments, the switches can be replaced by any switching regulator capable of operating at low operating voltage and currents that yield high efficiency. Such a system can be used in a waste-water treatment facility.
摘要:
A maskless process for forming a protected metal feature in a planar insulating layer of a substrate is disclosed. A first barrier material is disposed in a recess in an insulating layer, a conductive metal is disposed on the first barrier material such that the entire metal feature is positioned within the recess below the top of the recess, a second barrier material is disposed on the metal feature such that the second barrier material occupies the entire portion of the recess above the-metal feature and extends above the top surface of the insulating layer, and the second barrier material is then polished until the top of the second barrier material is in and aligned with the top of the insulating layer. As a result, the metal feature is surrounded and protected by the first and second barrier materials, and the substrate is planarized.
摘要:
A maskless process for forming a protected metal feature in a planar insulating layer of a substrate is disclosed. A first barrier material is disposed in a recess in an insulating layer, a conductive metal is disposed on the first barrier material such that the entire metal feature is positioned within the recess below the top of the recess, a second barrier material is disposed on the metal feature such that the second barrier material occupies the entire portion of the recess above the metal feature and extends above the top surface of the insulating layer, and the second barrier material is then polished until the top of the second barrier material is in and aligned with the top of the insulating layer. As a result, the metal feature is surrounded and protected by the first and second barrier materials, and the substrate is planarized.
摘要:
Various embodiments of the invention include a power management unit (PMU) to simultaneously control the production of hydrogen and electricity for external use in an MFC-MEC coupled system. In one embodiment, the PMU includes low voltage electronic switches using MOSFETs, and a PWM controller. The PWM controller creates timing waveform necessary to operate the switches. In other embodiments, the switches can be replaced by any switching regulator capable of operating at low operating voltage and currents that yield high efficiency. Such a system can be used in a waste-water treatment facility.
摘要:
The invention described here uses a Mouth Phoneme Model that relates phonemes and visemes using audio and visual information. This method allows for the direct conversion between lip movements and phonemes, and furthermore, the lip reading of any word in the English language. Speech API was used to extract phonemes from audio data obtained from a database which consists of video and audio information of humans speaking a word in different accents. A machine learning algorithm similar to WEKA (Waikato Environment for Knowledge Analysis) was used to train the lip reading system.