Abstract:
The invention relates to a valve (1, 1a), in particular an expansion valve, for controlling fluid flow, having a valve central housing (10, 10a) having a first and a second opening (12, 12a, 14, 14a) and a valve element (20, 20a) which has a rotationally symmetrical outline and is arranged rotatably within the valve element housing (10, 10a). According to the invention, the valve element (20, 20a) has a cut-out, wherein the cut-out (30, 30a, 30b, 30c) has a variable dimension, and a sub region (32, 32a) of the cutout (30, 30a, 30b, 30c) is formed continuously through the valve element (20, 20a).
Abstract:
A distribution valve comprises: a housing, and a spool in the housing, the spool mounted in a valve chamber so as to be rotatable along an axial axis, and the spool comprising a sidewall comprising a first spheroidal segment and a second spheroidal segment, a spool first port in the first spheroidal segment, and a spool second port in the second spheroidal segment; and an intermediate member mounted between the housing and the spool and fixed relative to the housing and in sliding contact with the sidewall of the spool in a sealed manner, wherein a first valve port is defined when the spool first port and an intermediate first port overlap, and a second valve port is defined when the spool second port and an intermediate second port overlap, wherein a degree of opening of the valve ports changes as the spool rotates relative to the housing.
Abstract:
The invention relates to a valve (1, 1a), in particular an expansion valve, for controlling fluid flow, having a valve central housing (10, 10a) having a first and a second opening (12, 12a, 14, 14a) and a valve element (20, 20a) which has a rotationally symmetrical outline and is arranged rotatably within the valve element housing (10, 10a). According to the invention, the valve element (20, 20a) has a cut-out, wherein the cut-out (30, 30a, 30b, 30c) has a variable dimension, and a sub region (32, 32a) of the cutout (30, 30a, 30b, 30c) is formed continuously through the valve element (20, 20a).
Abstract:
A distribution valve comprises: a housing, and a spool in the housing, the spool mounted in a valve chamber so as to be rotatable along an axial axis, and the spool comprising a sidewall comprising a first spheroidal segment and a second spheroidal segment, a spool first port in the first spheroidal segment, and a spool second port in the second spheroidal segment; and an intermediate member mounted between the housing and the spool and fixed relative to the housing and in sliding contact with the sidewall of the spool in a sealed manner, wherein a first valve port is defined when the spool first port and an intermediate first port overlap, and a second valve port is defined when the spool second port and an intermediate second port overlap, wherein a degree of opening of the valve ports changes as the spool rotates relative to the housing.
Abstract:
A vehicle apparatus (10a; 10b; 10c) having at least one thermal management unit (12a; 12b; 12c) which has at least one first throughflow region (14a; 14b; 14c) and at least one second throughflow region (16a; 16b; 16c), which are connectable in accordance with demand in each case to a first heat circuit (18a) and/or to a second heat circuit (20a), and has a heat-exchange unit (22a; 22b; 22c) which, in at least one operating state, exchanges heat in accordance with demand between the first throughflow region (14a; 14b; 14c) and the second throughflow region (16a; 16b; 16c).
Abstract:
Equipping engine cooling fans with flaps, in particular ram-air flaps, which are opened by the relative wind and can close again by means of gravity at a vehicle standstill, is known. Until know, it has been common to install such ram-air flaps manually on a frame of the engine cooling fan. However, all of said embodiment concepts require complex motion guidance during the installation in/on the frame. The invention relates to a method for producing a frame (1) for an engine cooling fan of a motor vehicle in order to provide economical automation, the frame being equipped with a flap (5), in particular ram-air flap, and produced by means of injection molding in a tool (16), wherein an articulated connection of the flap (5) to the frame (1) is provided in a joint production step for the frame (1), in which the flap (5) is first prepositioned in the tool (16) for the production of the frame (1) and then provided cavities (10) of the flap (5) are also filled during the production of the frame (1), which cavities form corresponding bearing points (11) for the flap (5) on the frame (1) after the solidification of the plastic and thus enable a movable connection of the flap (5) to the frame (1). The invention is intended for frames having ram-air flaps for engine cooling fans of motor vehicles.