摘要:
A gas diffusion cathode for electrochemical cells provides higher power capability through the use of nano-particle catalysts. The catalysts comprise nanometer-sized particles of transition metals such as nickel, cobalt, manganese, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These catalysts can substantially replace or eliminate platinum as a catalyst for oxygen reduction. Cathodes using such catalysts have applications to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air breathing electrochemical systems.
摘要:
A gas diffusion cathode for electrochemical cells provides higher power capability through the use of nano-particle catalysts. The catalysts comprise nanometer-sized particles of transition metals such as nickel, cobalt, manganese, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These catalysts can substantially replace or eliminate platinum as a catalyst for oxygen reduction. Cathodes using such catalysts have applications to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air breathing electrochemical systems.
摘要:
A gas diffusion cathode for electrochemical cells provides higher power capability through the use of nano-particle catalysts. The catalysts comprise nanometer-sized particles of transition metals such as nickel, cobalt, manganese, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These catalysts can substantially replace or eliminate platinum as a catalyst for oxygen reduction. Cathodes using such catalysts have applications to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air breathing electrochemical systems.