摘要:
A job scheduler can select a processor core operating frequency for a node in a cluster to perform a job based on energy usage and performance data. After a job request is received, an energy aware job scheduler accesses data that specifies energy usage and job performance metrics that correspond to the requested job and a plurality of processor core operating frequencies. A first of the plurality of processor core operating frequencies is selected that satisfies an energy usage criterion for performing the job based, at least in part, on the data that specifies energy usage and job performance metrics that correspond to the job. The job is assigned to be performed by a node in the cluster at the selected first of the plurality of processor core operating frequencies.
摘要:
A job scheduler can select a processor core operating frequency for a node in a cluster to perform a job based on energy usage and performance data. After a job request is received, an energy aware job scheduler accesses data that specifies energy usage and job performance metrics that correspond to the requested job and a plurality of processor core operating frequencies. A first of the plurality of processor core operating frequencies is selected that satisfies an energy usage criterion for performing the job based, at least in part, on the data that specifies energy usage and job performance metrics that correspond to the job. The job is assigned to be performed by a node in the cluster at the selected first of the plurality of processor core operating frequencies.
摘要:
A job scheduler can select a processor core operating frequency for a node in a cluster to perform a job based on energy usage and performance data. After a job request is received, an energy aware job scheduler accesses data that specifies energy usage and job performance metrics that correspond to the requested job and a plurality of processor core operating frequencies. A first of the plurality of processor core operating frequencies is selected that satisfies an energy usage criterion for performing the job based, at least in part, on the data that specifies energy usage and job performance metrics that correspond to the job. The job is assigned to be performed by a node in the cluster at the selected first of the plurality of processor core operating frequencies.
摘要:
A job scheduler can select a processor core operating frequency for a node in a cluster to perform a job based on energy usage and performance data. After a job request is received, an energy aware job scheduler accesses data that specifies energy usage and job performance metrics that correspond to the requested job and a plurality of processor core operating frequencies. A first of the plurality of processor core operating frequencies is selected that satisfies an energy usage criterion for performing the job based, at least in part, on the data that specifies energy usage and job performance metrics that correspond to the job. The job is assigned to be performed by a node in the cluster at the selected first of the plurality of processor core operating frequencies.
摘要:
A differential comparator, working with microwaves and using only one clock, is disclosed. This comparator has a differential amplifier and a divergence circuit in which are included two voltage level translators. The coupling between the amplifier and the divergence circuit is made at the gates of the load transistors of the divergence circuit. Two insulation transistors, working in either saturated mode or resistive mode, are used to provide the amplifier with an automatic control loop which stabilizes all the rest voltages. The clock signal, applied to two transistors which short circuit the two feedback transistors of the divergence circuit, controls the passage from the measuring phase to the divergence phase.
摘要:
The invention relates to a fluid film bearing and to a process for its production.The invention relates to a hydrodynamic fluid film bearing formed between a plurality of sheets (3) fixed to a casing (5) and a shaft (6) in rotation with respect to said casing. The invention has as an object to completely dissociate the control of the radial rigidity of the bearing in the startup phase and that in the rotational phase at working speed.A low rigidity, negligible or zero of the sheets (3) permits limiting the application forces of the sheets against the shaft and thus to reduce the wear upon startup of the bearing. After startup, the rotation of the shaft (6) at the interior of the sheet (3) causes a displacement of the sheets (3) which separate from the shaft (6) by the interposition of a hydrodynamic film of air. The new position occupied by the sheets (3) causes a return of the force of the sheets (3) by the restraining elements (4), as for example of leaf springs (40, 41, 42 or 43).The invention is applied in particular to all conventional applications of fluid film bearings of the known type, as for example motors or rotating machines equipping aircraft.The invention is further applicable to the provision of bearings susceptible of rotating at low speed, and/or susceptible of supporting high loads.