摘要:
A sensor circuit is configured and operated in the presence of interference. In connection with various example embodiments, a stray magnetic field is sensed with current sensors that also respectively sense current-induced magnetic fields generated by current flowing in opposing directions through different portions of a conductor. The current-induced magnetic fields and the stray magnetic field are coplanar, and the current sensors are arranged such that a portion of the output from each current sensor corresponding to the stray magnetic field is canceled when the sensor outputs are combined.
摘要:
A magnetoresistive angular sensor and sensing method, in which an external magnetic field generator is used to provide a first mode in which a dc external magnetic field is provided in a predetermined direction and which dominates over the magnetic field generated by the input device being sensed. In a second mode, the external magnetic field is smaller. The angular sensor arrangement outputs from the two modes are combined, and this enables the input device angular orientation to be determined with offset voltage compensation.
摘要:
A sensor circuit is configured and operated in the presence of interference. In connection with various example embodiments, a stray magnetic field is sensed with current sensors that also respectively sense current-induced magnetic fields generated by current flowing in opposing directions through different portions of a conductor. The current-induced magnetic fields and the stray magnetic field are coplanar, and the current sensors are arranged such that a portion of the output from each current sensor corresponding to the stray magnetic field is canceled when the sensor outputs are combined.
摘要:
A magnetoresistive sensor comprising first and second magnetoresistive elements is disclosed. Each magnetoresistive element is coupled at a respective first end to a common ground terminal and comprises one or more magnetoresistive segments, each overlying a corresponding segment of an excitation coil. The resistance of the magnetoresistive segments in each of the first and second magnetoresistive elements is the same and the resistance of the segments of the excitation coil corresponding to the first magnetoresistive element is the same as the resistance of the segments of the excitation coil corresponding to the second magnetoresistive element.
摘要:
A sensor circuit is configured for operation under conditions susceptible to misalignment or movement. In connection with various example embodiments, an alignment-tolerant sensor arrangement includes a reference component and first and second magnetic sensors. The reference component influences a magnetic field as a function of a position of the reference component, such as via the positioning of a magnetic type of component. The first magnetic sensor is aligned with a first magnetic field sensitivity direction, and exhibits an electrical response to the presence of the magnetic field. The second magnetic sensor is aligned with a first magnetic field sensitivity direction and is configured to exhibit an electrical response to the presence of the magnetic field. The first and second magnetic field sensitivity directions being offset from one another to facilitate detection of magnetic fields at different relative alignments between the reference component and the first and second magnetic sensors.
摘要:
A sensor circuit is configured for operation under conditions susceptible to misalignment or movement. In connection with various example embodiments, an alignment-tolerant sensor arrangement includes a reference component and first and second magnetic sensors. The reference component influences a magnetic field as a function of a position of the reference component, such as via the positioning of a magnetic type of component. The first magnetic sensor is aligned with a first magnetic field sensitivity direction, and exhibits an electrical response to the presence of the magnetic field. The second magnetic sensor is aligned with a first magnetic field sensitivity direction and is configured to exhibit an electrical response to the presence of the magnetic field. The first and second magnetic field sensitivity directions being offset from one another to facilitate detection of magnetic fields at different relative alignments between the reference component and the first and second magnetic sensors.
摘要:
An AMR sensor, comprises at least first and second AMR sensor elements to which opposite bias fields are applied. The first and second AMR sensor element outputs are combined to derive a sensor response which is substantially anti-symmetric in the region close to zero external magnetic field. This arrangement shifts the zero detection point of the AMR sensor elements away from a maximum of the response curve, so that sensitivity in proximity to a zero input field is obtained. To overcome the problem that the response is not anti-symmetric, the signals from (at least) two sensor elements are combined.
摘要:
A magnetoresistive sensor comprising first and second magnetoresistive elements is disclosed. Each magnetoresistive element is coupled at a respective first end to a common ground terminal and comprises one or more magnetoresistive segments, each overlying a corresponding segment of an excitation coil. The resistance of the magnetoresistive segments in each of the first and second magnetoresistive elements is the same and the resistance of the segments of the excitation coil corresponding to the first magnetoresistive element is the same as the resistance of the segments of the excitation coil corresponding to the second magnetoresistive element.
摘要:
A magnetic sensing system, including: a magnetic component proximate a movable mechanical component; and a magnetic sensor configured to determine a movement of the mechanical component based on a magnetic field produced by the magnetic component. The magnetic sensor includes: a low-offset magnetic sensing element; a high-sensitivity magnetic sensing element; and an offset compensation circuit configured to: determine a zero-crossing of a sensing field from an output of the low-offset magnetic sensing element; sample an offset value of the high-sensitivity magnetic sensing element at the zero-crossing; and subtract the offset value from an output of the high-sensitivity magnetic sensing element.
摘要:
Disclosed is a circuit for converting an analog input signal into a digital code (b1-bN), comprising a delay circuit adapted to generate a periodical signal having a delay as a function of the analog input signal value; and a quantization stage for converting the delayed periodical signal into the digital code. The circuit converts an analog voltage or current into the time-domain, thus facilitating the implementation of high-speed analog-to-digital converters into submicron technologies, in particular CMOS technologies. A method of converting an analog input signal into a digital code (b1-bN) is also disclosed.