摘要:
A method for processing red mud to recover iron, aluminum, silicon and titanium metal values therefrom the method comprising the steps of adding the red mud to a digester containing an acid to provide a mixture of acid and red mud and heating the mixture to dissolve soluble compounds of at least one of iron, aluminum, silicon and titanium to provide a digest containing dissolved salts of the soluble compounds and to provide a gas component. Thereafter, the digest is treated with water to dissolve water soluble salts therein to provide a slurry comprised of a liquid containing water and the dissolved soluble salts and a solid component comprised of silica. The solid component is separated from the liquid and the pH of the liquid is adjusted to form an aluminate and an iron-containing precipitate. The iron-containing precipitate is separated from the liquid to provide an iron-depleted liquid whose pH is adjusted to precipitate aluminum trihydrate which is separated from the iron-depleted liquid to provide an aluminum trihydrate-depleted liquid. The pH of the aluminum trihydrate-depleted liquid is adjusted to form a precipitate comprised of at least one remaining salt in the aluminum trihydrate-depleted liquid to provide a salt-depleted liquid. The salt precipitate is separated from the salt-depleted liquid thereby recovering the metal values from the red mud.
摘要:
Spent potliner from an aluminum reduction cell is subject to an acid digest and the digest may be adjusted to produce a first gas component comprised of at least one material selected from the group consisting of silicon tetrafluoride, hydrogen fluoride, hydrogen cyanide gas and water vapor, and a slurry component comprised of at least one material selected from the group consisting of carbon, silica, alumina, and sodium, iron, calcium and magnesium compounds. The first gas component is removed from the digester and heated to a temperature sufficiently high to convert said silicon tetrafluoride to fumed silica and hydrogen fluoride. Thereafter, the fumed silica is separated from the hydrogen fluoride to recover fumed silica from spent potliner material.
摘要:
A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.
摘要:
A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900° C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.
摘要:
A method of treating spent potliner material from aluminum reduction cells is disclosed. The spent potliner material is introduced into a sulfuric acid digester to produce a gas component including hydrogen fluoride and hydrogen cyanide and a slurry component including carbon, silica, alumina, sodium sulfate, iron, calcium and magnesium. The gas component is recovered and heated an effective amount to eliminate hydrogen cyanide and produce a remaining gas component including CO.sub.2, H.sub.2 O, nitrogen oxides and HF. The remaining gas component is directed through a water scrubber to form hydrofluoric acid, and the hydrofluoric acid is admixed with aluminum hydroxide to create aluminum fluoride. The slurry component is rinsed with water to separate a first solid fraction containing carbon, alumina and silica from a second liquid faction. The pH of the liquid fraction is adjusted to first create and separate aluminum hydroxide and then to separate sodium sulfate. Finally, the solid fraction is admixed with an alumina/silica mix and then subjected to an elevated temperature in an oxygen-rich atmosphere to oxidize the carbon and vitrify the alumina and silica into refractory material.
摘要:
A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900° C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu—Ni—Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.
摘要:
Electrolysis of alumina dissolved in a molten salt electrolyte employing inert anode and cathodes, the anode having a box shape with slots for the cathodes.
摘要:
A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.