Abstract:
A tool is employed with a subsea wellhead assembly for preventing the collapse of a wear bushing located in a drill-through tubular member due to external test forces being applied to it. The tool has a connector that connects to the drill-through tubular member. A stem extends downward from the connector and has a reacting member at its lower end. The reacting member engages an inner diameter of the wear bushing to resist inwardly directed forces due to fluid pressure on the exterior of the wear bushing. The tool can be incorporated with a running tool or with a blowout preventer isolation test tool.
Abstract:
A subsea wellhead assembly allows communication between a production tubing annulus and a conduit in fluid communication with a platform above. The wellhead assembly has a tubing hanger that is held relative to a tubular wellhead member of a subsea well by a tubing hanger support. A string of tubing extends from the tubing hanger into the well, defining an annulus around the tubing. The conduit communicates with the tubing annulus through a tubing annulus passage. The tubing annulus passage has a portion extending through the tubing hanger support. The wellhead member supports a valve block located between the tubing hanger support and the riser. The tubing annulus passage has another portion that registers with the portion of the passage in the tubing hanger support. The conduit stabs into valve block portion of the tubing annulus passage when the riser connects to the upper end of the valve block.
Abstract:
A wellhead connector for connecting a riser or production tree to a wellhead of a subsea well utilizes a singular annular piston to lock the connector onto the wellhead. The wellhead connector includes a housing that contains dogs for engagement with the exterior of the wellhead housing. A cam ring is also included, which has an inner side for engaging the dogs and moving them inward into a locked position with the wellhead housing. The cam ring is of a reduced proportion relative to prior art. As such, the cam ring outer side is dimensioned to contact the inner side of the connector housing under load. Connecting rods connect the piston to the cam rings. As the piston moves downward, the cam ring also moves downward, forcing the dogs inward into a locked position. As the piston moves upward, the cam ring also moves upward, thereby unlocking the connector. A secondary annular piston is also provided to guarantee unlocking.At preload, a profile on the lower portion of the connector body engages a stepped profile on the outer diameter of the wellhead thereby creating a secondary load path for reacting to the applied bending moment.
Abstract:
A method of unloading a well using a modular adapter having a pump, a pump suction line, and a pump discharge line. The adapter is connected to a subsea wellhead assembly so that the pump suction line communicates with a main bore in the wellhead assembly and the pump discharge line communicates with a production line attached to the wellhead assembly. The production line is isolated from the main bore and the pump draws fluid from within the well and discharges it into the production line. After unloading the well, the adapter can be removed and moved to another location for well unloading.
Abstract:
A tool is employed with a subsea wellhead assembly for preventing the collapse of a wear bushing located in a drill-through tubular member due to external test forces being applied to it. The tool has a connector that connects to the drill-through tubular member. A stem extends downward from the connector and has a reacting member at its lower end. The reacting member engages an inner diameter of the wear bushing to resist inwardly directed forces due to fluid pressure on the exterior of the wear bushing. The tool can be incorporated with a running tool or with a blowout preventer isolation test tool.
Abstract:
A method of unloading a well using a modular adapter having a pump, a pump suction line, and a pump discharge line. The adapter is connected to a subsea wellhead assembly so that the pump suction line communicates with a main bore in the wellhead assembly and the pump discharge line communicates with a production line attached to the wellhead assembly. The production line is isolated from the main bore and the pump draws fluid from within the well and discharges it into the production line. After unloading the well, the adapter can be removed and moved to another location for well unloading.
Abstract:
A wellhead connector for connecting a riser or production tree to a wellhead of a subsea well utilizes a singular annular piston to lock the connector onto the wellhead. The wellhead connector includes a housing that contains dogs for engagement with the exterior of the wellhead housing. A cam ring is also included, which has an inner side for engaging the dogs and moving them inward into a locked position with the wellhead housing. The cam ring is of a reduced proportion relative to prior art. As such, the cam ring outer side is dimensioned to contact the inner side of the connector housing under load. Connecting rods connect the piston to the cam rings. As the piston moves downward, the cam ring also moves downward, forcing the dogs inward into a locked position. As the piston moves upward, the cam ring also moves upward, thereby unlocking the connector. A secondary annular piston is also provided to guarantee unlocking.At preload, a profile on the lower portion of the connector body engages a stepped profile on the outer diameter of the wellhead thereby creating a secondary load path for reacting to the applied bending moment.
Abstract:
A subsea production system adapted for wireless communication so that production tree operation can be controlled locally wirelessly from a workover umbilical or remotely controlled vehicle. The production system includes a wellhead assembly and an umbilical termination connected to an umbilical that extends to above the sea surface. Dedicated wireless communication devices can be attached to one or both of the wellhead assembly and the umbilical termination. The wireless communication devices can include a radio frequency modem, a sonar device, an infrared communication device, a light emitting diode, an optical modem, and combinations thereof; the wireless communication can include radio frequency waves, acoustic waves, and electromagnetic waves. A subsea control module can be included for controlling/actuating devices in or associated with the production system. The subsea control module can be adapted for wireless communication.
Abstract:
A removable module for actuating elements, such as valves, within a subsea production tree. The module can include a motor, a drive shaft, and a ball screw. Embodiments exist where only the motor is removable, optionally the motor and drive shaft and/or all module elements are removable. A fail safe system is included that moves the production tree element into a pre-designated fail safe position.
Abstract:
An electrical and hydraulic configuration on a subsea tree that facilitates the use of an ROV control system to operate the tree during well installations, interventions, and workovers. An SCM at the tree is in communication with a fixed junction plate that receives a production umbilical during normal operation. The ROV can be deployed to disconnect and park the production umbilical during well installations, interventions, and workovers to prevent accidental operation of the SCM or tree. The junction plate is configured to connect with the ROV and thereby establish communication with the hydraulic lines of the SCM. The ROV may carry an umbilical from a vessel to provide electrical and hydraulic service to the SCM during well operations. In addition, the ROV has facilities to repressurize spent control fluid to thereby allow reuse of the control fluid by the SCM.