摘要:
A method for transferring data of a hybrid virtual volume of a computer data storage system from a source to a destination is disclosed. The method first translates intermingled virtual and physical volume block numbers of the hybrid virtual volume into a data stream having only virtual volume block numbers. The method then sends the data stream to a destination computer.
摘要:
A technique converts a stream of virtual volume block numbers (vvbns) into a hybrid virtual volume (vvol) file system containing both physical volume block numbers (pvbns) and vvbns. The stream of vvbns is illustratively embodied as a file system data stream of a vvol that is transferred by a source to a destination in accordance with image transfer operations, such as volume copying and synchronous or asynchronous mirroring. Transfer of the vvol involves converting a file system on the source vvol into the file system data stream (i.e., a “pure” vvol stream), where all blocks of the vvol are represented by vvbns. The file system data stream is then transferred to the destination, where the vvbns of the pure vvol stream blocks are converted to pvbns of a hybrid stream.
摘要:
A technique translates a hybrid virtual volume (vvol) having a file system that contains intermingled virtual and physical volume block numbers (vbns) into a “pure” stream of virtual vbns (vvbns). The stream of vvbns is illustratively embodied as an output file system data stream of a vvol image that is transferred by a source storage system (“source”) to a destination storage system (“destination”) in accordance with image transfer operations, such as volume copying and synchronous or asynchronous mirroring, provided by a volume replication facility. The blocks that are sent as part of the image transfer are selected from a container file of the hybrid vvol on the source. In particular, the invention is directed to a technique for translating physical vbns (pvbns) of a source aggregate on the source to pure vvbns of the output file system data stream that can be used on a destination aggregate of the destination, where embedded pvbns in the source hybrid vvol image are not valid.
摘要:
A technique uniquely identifies block context signatures in a storage volume hierarchy of a storage system. In particular, the technique assigns unique volume identifiers (“IDs,” e.g., buffer tree or “bufftree” IDs) to volumes of the storage volume hierarchy, and allows clone volumes to determine that data blocks belong to an appropriate ancestor volume (e.g., and were written by the ancestor volume prior to creation of the clone). In this manner, the novel technique may uniquely identify and accurately determine whether an accessed data block is a correct data block (e.g., alleviating occurrences of data ID aliasing).
摘要:
A file system layout apportions an underlying physical volume into one or more virtual volumes (vvols) of a storage system. The underlying physical volume is an aggregate comprising one or more groups of disks, such as RAID groups, of the storage system. The aggregate has its own physical volume block number (pvbn) space and maintains metadata, such as block allocation structures, within that pvbn space. Each vvol has its own virtual volume block number (vvbn) space and maintains metadata, such as block allocation structures, within that vvbn space. Notably, the block allocation structures of a vvol are sized to the vvol, and not to the underlying aggregate, to thereby allow operations that manage data served by the storage system (e.g., snapshot operations) to efficiently work over the vvols.
摘要:
A file system layout apportions an underlying physical volume into one or more virtual volumes (vvols) of a storage system. The underlying physical volume is an aggregate comprising one or more groups of disks, such as RAID groups, of the storage system. The aggregate has its own physical volume block number (pvbn) space and maintains metadata, such as block allocation structures, within that pvbn space. Each vvol has its own virtual volume block number (vvbn) space and maintains metadata, such as block allocation structures, within that vvbn space. Notably, the block allocation structures of a vvol are sized to the vvol, and not to the underlying aggregate, to thereby allow operations that manage data served by the storage system (e.g., snapshot operations) to efficiently work over the vvols.
摘要:
An underlying physical volume of a storage system is an aggregate having a plurality of storage devices. The aggregate has its own physical volume block number (pvbn) space. A file system layout apportions the underlying physical volume into a plurality of virtual volumes of the storage system each having a virtual volume identification (vvid). Each virtual volume has its own virtual volume block number (vvbn) space. The block allocation structures of a virtual volume are sized to the virtual volume, and not to the underlying aggregate, to thereby allow operations that manage data served by the storage system (e.g., snapshot operations) to efficiently work over the virtual volumes. Each storage block in a virtual volume is identified by the triplet: pvbn, vvid, and vvbn.
摘要:
A file system layout apportions an underlying physical volume into one or more virtual volumes (vvols) of a storage system. The underlying physical volume is an aggregate comprising one or more groups of disks, such as RAID groups, of the storage system. The aggregate has its own physical volume block number (pvbn) space and maintains metadata, such as block allocation structures, within that pvbn space. Each vvol has its own virtual volume block number (vvbn) space and maintains metadata, such as block allocation structures, within that vvbn space. Notably, the block allocation structures of a vvol are sized to the vvol, and not to the underlying aggregate, to thereby allow operations that manage data served by the storage system (e.g., snapshot operations) to efficiently work over the vvols. The file system layout extends the file system layout of a conventional write anywhere file layout system implementation, yet maintains performance properties of the conventional implementation.
摘要:
A data storage system pre-fetches data blocks from a mass storage device, then determines whether reallocation of the pre-fetched blocks would improve access to them. If access would be improved, the pre-fetched blocks are written to different areas of the mass storage device. Several different implementations of such data storage systems are described.
摘要:
A data storage system pre-fetches data blocks from a mass storage device, then determines whether reallocation of the pre-fetched blocks would improve access to them. If access would be improved, the pre-fetched blocks are written to different areas of the mass storage device. Several different implementations of such data storage systems are described.