Abstract:
The present invention provides a test strip for measuring a signal of interest in a biological fluid when the test strip is mated to an appropriate test meter, wherein the test strip and the test meter include structures to verify the integrity of the test strip traces, to measure the parasitic resistance of the test strip traces, and to provide compensation in the voltage applied to the test strip to account for parasitic resistive losses in the test strip traces.
Abstract:
Persons with diabetes often carry a handheld glucose meter as well as a portable computing device, such as a mobile phone. Given the close proximity of these two devices, the portable computing device can serve as a data collector for the glucose measures taken by the glucose meter. Improved techniques are set forth for transferring glucose measures automatically and seamlessly to the patient's portable computing device, including transmitting a single glucose measure automatically in response to navigating away from an interface which displays to the glucose measure.
Abstract:
The present invention provides a test strip for measuring a signal of interest in a biological fluid when the test strip is mated to an appropriate test meter, wherein the test strip and the test meter include structures to verify the integrity of the test strip traces, to measure the parasitic resistance of the test strip traces, and to provide compensation in the voltage applied to the test strip to account for parasitic resistive losses in the test strip traces.
Abstract:
Persons with diabetes often carry a handheld glucose meter as well as a portable computing device, such as a mobile phone. Given the close proximity of these two devices, the portable computing device can serve as a data collector for the glucose measures taken by the glucose meter. Improved techniques are set forth for transferring glucose measures automatically and seamlessly to the patient's portable computing device, including transmitting a single glucose measure automatically in response to navigating away from an interface which displays to the glucose measure.
Abstract:
A handheld test strip illumination device includes a housing. A strip connector positioned within the housing receives a first portion of a test strip in a test strip test position. A light source is positioned within the housing. A lens/light reflecting device is aligned to receive photons emitted from the light source and direct the photons onto the first portion of the test strip within the strip connector. The first portion of the test strip within the strip connector includes a longitudinal transparent layer receiving the photons emitted from the lens/light reflecting device within the housing. The photons pass through the longitudinal transparent layer and are emitted from the longitudinal transparent layer in a second portion of the test strip positioned outside of the housing, thereby illuminating a dose area of the test strip.
Abstract:
A handheld test strip illumination device includes a housing. A strip connector positioned within the housing receives a first portion of a test strip in a test strip test position. A light source is positioned within the housing. A lens/light reflecting device is aligned to receive photons emitted from the light source and direct the photons onto the first portion of the test strip within the strip connector. The first portion of the test strip within the strip connector includes a longitudinal transparent layer receiving the photons emitted from the lens/light reflecting device within the housing. The photons pass through the longitudinal transparent layer and are emitted from the longitudinal transparent layer in a second portion of the test strip positioned outside of the housing, thereby illuminating a dose area of the test strip.
Abstract:
A handheld medical device that simultaneously charges its re-chargeable battery and measures one or more characteristics of a bodily fluid is taught. The handheld medical device includes a re-chargeable battery, a wireless power receiver, a battery charging module, and a measurement module. The re-chargeable battery is electrically connected to provide power to components of the handheld medical device. The wireless power receiver outputs power received wirelessly, via an antenna, from a wireless power transmitter that is external to the handheld medical device. The battery charging module selectively charges the re-chargeable battery based on the power received wirelessly from the wireless power transmitter. While the handheld medical device is not connected by wire to any other device, the measurement module measures a characteristic of a sample of a bodily fluid simultaneously with the battery charging module charging the re-chargeable battery.