Abstract:
A laboratory sample distribution system is presented. The system comprises a plurality of container carriers. The container carriers each comprise at least one magnetically active device such as, for example, at least one permanent magnet, and carry a sample container containing a sample. The system also comprises a transport device. The transport device comprises a transport plane to carry the plurality of container carriers and a plurality of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators move a container carrier placed on top of the transport plane by applying a magnetic force to the container carrier. The transport device also comprises a control device to control the movement of the container carriers on top of the transport plane by driving the electro-magnetic actuators. The control device controls the movement such that more than two container carriers are movable simultaneously and independently from one another.
Abstract:
A laboratory sample distribution system is presented. The system comprises a plurality of container carriers. The container carriers each comprise at least one magnetically active device such as, for example, at least one permanent magnet, and carry a sample container containing a sample. The system also comprises a transport device. The transport device comprises a transport plane to carry the plurality of container carriers and a plurality of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators move a container carrier placed on top of the transport plane by applying a magnetic force to the container carrier. The transport device also comprises a control device to control the movement of the container carriers on top of the transport plane by driving the electro-magnetic actuators. The control device controls the movement such that more than two container carriers are movable simultaneously and independently from one another.
Abstract:
A laboratory sample distribution system is presented. The system comprises a plurality of container carriers. The container carriers each comprise at least one magnetically active device such as, for example, at least one permanent magnet, and carry a sample container containing a sample. The system also comprises a transport device. The transport device comprises a transport plane to carry the plurality of container carriers and a plurality of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators move a container carrier placed on top of the transport plane by applying a magnetic force to the container carrier. The transport device also comprises a control device to control the movement of the container carriers on top of the transport plane by driving the electro-magnetic actuators. The control device controls the movement such that more than two container carriers are movable simultaneously and independently from one another.
Abstract:
A method of operating a laboratory sample distribution system is disclosed. The laboratory sample distribution system comprises a plurality of sample container carriers. The sample container carriers carry one or more sample containers. The sample containers comprise samples to be analyzed by a plurality of laboratory stations. The system also comprises a transport plane. The transport plane supports the sample container carriers. The transport plane comprises a plurality of transfer locations. The transfer locations are assigned to corresponding laboratory stations. The system also comprises a drive. The drive moves the sample container carriers on the transport plane. The method comprises, during an initialization of the laboratory sample distribution system, pre-calculating routes depending on the transfer locations and, after the initialization of the laboratory sample distribution system, controlling the drive such that the sample container carriers move along the pre-calculated routes.
Abstract:
A method of operating a laboratory sample distribution system is disclosed. The laboratory sample distribution system comprises a plurality of sample container carriers. The sample container carriers carry one or more sample containers. The sample containers comprise samples to be analyzed by a plurality of laboratory stations. The system also comprises a transport plane. The transport plane supports the sample container carriers. The transport plane comprises a plurality of transfer locations. The transfer locations are assigned to corresponding laboratory stations. The system also comprises a drive. The drive moves the sample container carriers on the transport plane. The method comprises, during an initialization of the laboratory sample distribution system, pre-calculating routes depending on the transfer locations and, after the initialization of the laboratory sample distribution system, controlling the drive such that the sample container carriers move along the pre-calculated routes.
Abstract:
A laboratory sample distribution system is presented. The system comprises a plurality of container carriers. The container carriers each comprise at least one magnetically active device such as, for example, at least one permanent magnet, and carry a sample container containing a sample. The system also comprises a transport device. The transport device comprises a transport plane to carry the plurality of container carriers and a plurality of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators move a container carrier placed on top of the transport plane by applying a magnetic force to the container carrier. The transport device also comprises a control device to control the movement of the container carriers on top of the transport plane by driving the electro-magnetic actuators. The control device controls the movement such that more than two container carriers are movable simultaneously and independently from one another.