摘要:
Certain squaric acid derivatives are useful for the thermochemical generation of acid. The squaric acid derivatives may be used in imaging media in conjunction with acid-sensitive materials which undergo a color change when contacted by the acid generated from the squaric acid derivatives. Preferably, the acid-sensitive materials undergo an irreversible color change, so that the image can be fixed by neutralizing all the acid generated with excess base, thereby preventing further color change in the image during long term storage.
摘要:
Certain squaric acid derivatives are useful for the thermochemical generation of acid. The squaric acid derivatives may be used in imaging media in conjunction with acid-sensitive materials which undergo a color change when contacted by the acid generated from the squaric acid derivatives. Preferably, the acid-sensitive materials undergo an irreversible color change, so that the image can be fixed by neutralizing all the acid generated with excess base, thereby preventing further color change in the image during long term storage.
摘要:
Certain squaric acid derivatives are useful for the thermochemical generation of acid. The squaric acid derivatives may be used in imaging media in conjunction with acid-sensitive materials which undergo a color change when contacted by the acid generated from the squaric acid derivatives. Preferably, the acid-sensitive materials undergo an irreversible color change, so that the image can be fixed by neutralizing all the acid generated with excess base, thereby preventing further color change in the image during long term storage.
摘要:
Certain squaric acid derivatives are useful for the thermochemical generation of acid. The squaric acid derivatives may be used in imaging media in conjunction with acid-sensitive materials which undergo a color change when contacted by the acid generated from the squaric acid derivatives. Preferably, the acid-sensitive materials undergo an irreversible color change, so that the image can be fixed by neutralizing all the acid generated with excess base, thereby preventing further color change in the image during long term storage.
摘要:
Acid can be generated by exposing a superacid precursor to actinic radiation effective to generate superacid from the superacid precursor and heating the superacid in admixture with a secondary acid generator capable of undergoing thermal decomposition to produce a secondary acid. The superacid catalyzes decomposition of the secondary acid generator, thus increasing the quantity of strong acid present in the medium. The resultant secondary acid can be used to effect a color change in an acid-sensitive material, so providing an imaging process.
摘要:
Acid can be generated by exposing a superacid precursor to actinic radiation effective to generate superacid from the superacid precursor and heating the superacid in admixture with a secondary acid generator capable of undergoing thermal decomposition to produce a secondary acid. The superacid catalyzes decomposition of the secondary acid generator, thus increasing the quantity of strong acid present in the medium. The resultant secondary acid can be used to effect a color change in an acid-sensitive material, so providing an imaging process.
摘要:
Acid can be generated by exposing a superacid precursor to actinic radiation effective to generate superacid from the superacid precursor and heating the superacid in admixture with a secondary acid generator capable of undergoing thermal decomposition to produce a secondary acid. The superacid catalyzes decomposition of the secondary acid generator, thus increasing the quantity of strong acid present in the medium. The resultant secondary acid can be used to effect a color change in an acid-sensitive material, so providing an imaging process.
摘要:
Acid can be generated by exposing a mixture of a superacid precursor and a dye to actinic radiation of a first wavelength which does not, in the absence of the dye, cause decomposition of the superacid precursor to form the corresponding superacid, thereby causing absorption of the actinic radiation and decomposition of part of the superacid precursor, with formation of a protonated product derived from the dye, then irradiating the mixture with actinic radiation of a second wavelength, thereby causing decomposition of part of the remaining superacid precursor, with formation of unbuffered superacid. Preferably, following these irradiations, the imaging medium is heated while the superacid is admixed with a secondary acid generator capable of being thermally decomposed to form a second acid, the thermal decomposition of the secondary acid generator being catalyzed by the presence of the superacid. The acid generation process may be used for imaging by bringing the superacid or second acid into contact with an acid-sensitive material which changes color on contact with acid, or the superacid may be used to trigger polymerization, depolymerization or other reactions.
摘要:
Acid can be generated by exposing a mixture of a superacid precursor and a dye to actinic radiation of a first wavelength which does not, in the absence of the dye, cause decomposition of the superacid precursor to form the corresponding superacid, thereby causing absorption of the actinic radiation and decomposition of part of the superacid precursor, with formation of a protonated product derived from the dye, then irradiating the mixture with actinic radiation of a second wavelength, thereby causing decomposition of part of the remaining superacid precursor, with formation of unbuffered superacid. Preferably, following these irradiations, the imaging medium is heated while the superacid is admixed with a secondary acid generator capable of being thermally decomposed to form a second acid, the thermal decomposition of the secondary acid generator being catalyzed by the presence of the superacid. The acid generation process may be used for imaging by bringing the superacid or second acid into contact with an acid-sensitive material which changes color on contact with acid, or the superacid may be used to trigger polymerization, depolymerization or other reactions.
摘要:
Acid can be generated by exposing a superacid precursor to actinic radiation effective to generate superacid from the superacid precursor and heating the superacid in admixture with a squaric acid derivative in which there is bonded to the squaric acid ring, via an oxygen atom, an alkyl or alkylene group, a partially hydrogenated aryl or arylene group, or an aralkyl group. The superacid catalyzes decomposition of the squaric acid derivative, thus increasing the quantity of strong acid present in the medium. The resultant acid can be used to effect a color change in an acid-sensitive material, so providing an imaging process.