摘要:
A rotor blade assembly for a wind turbine is disclosed. The rotor blade assembly includes a rotor blade having surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a tip and a root. The rotor blade further includes a noise reducer configured on a surface of the rotor blade, the noise reducer comprising a plurality of serrations, each of the plurality of serrations defining a centerline. The centerline of each of the plurality of serrations defines a individual tailored angle dependent on at least one of span-wise location, local chord, width, length, bend angle, and thickness
摘要:
A rotor blade assembly for a wind turbine is disclosed. The rotor blade assembly includes a rotor blade having surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a tip and a root. The rotor blade further includes a noise reducer configured on a surface of the rotor blade, the noise reducer comprising a plurality of serrations, each of the plurality of serrations defining a centerline. The centerline of each of the plurality of serrations defines a individual tailored angle dependent on at least one of span-wise location, local chord, width, length, bend angle, and thickness.
摘要:
In one aspect, a winglet for a rotor blade is disclosed. The winglet may generally include a winglet body extending at least partially between a winglet origin and a blade tip. The winglet body may define a sweep and a pre-bend. The sweep defined between the winglet origin and the blade tip may range from about 0.5% to about 4.0% of a span of the rotor blade. The pre-bend defined between the winglet origin and the blade tip may range from about 1.5% to about 4.5% of the span of the rotor blade
摘要:
A rotor blade assembly for a wind turbine is disclosed. In one embodiment, the rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a tip and a root. The rotor blade further defines a span and a chord. The rotor blade assembly further includes a noise reducer configured on an exterior surface of the rotor blade. The noise reducer includes a plurality of noise reduction features. Each of the plurality of noise reduction features defines a centerline. In a planform view, the centerline of each of the plurality of noise reduction features is approximately parallel to a local flow streamline for that noise reduction feature at the trailing edge of the rotor blade.
摘要:
A device for measuring fluid pressure, includes at least one flexible layer having a first surface adapted for fixing the layer to a structure, and having a second surface having at least one recess; at least one pressure sensor, provided in the at least one recess; and at least two wires connected to the at least one pressure sensor for connecting the at least one pressure sensor to a signal receiving unit. Further, a method for measuring fluid pressure is provided.
摘要:
A winglet for a rotor blade is disclosed. The winglet may generally include a winglet body extending between a first end and a second end. The winglet body may define a sweep and may have a curvature defined by a curve fit including a first radius of curvature and a second radius of curvature. The sweep between the first end and the second end may range from about 580 millimeters to about 970 millimeters. Additionally, the first radius of curvature may range from about 1500 millimeters to about 2500 millimeters and the second radius of curvature may range from about 1200 millimeters to about 2000 millimeters.
摘要:
The present subject matter relates to methods and systems for operating a wind turbine that, in some embodiments may include a gearbox. The wind turbine is provided with a blade having an adjustable pitch angle and the tip speed ratio (TSR) of the blade is monitored. In operation, the method and system is configured to increase the pitch angle of the blade concurrently with an increase in TSR to maintain turbine operation within an identified high power coefficient (Cp) operational region for the blade. TSR may be monitored by monitoring one of the velocity of the tip of the blade, wind speed, the rotational speed of the blade, or the rotational speed of a component within the gearbox.
摘要:
A method for utilizing site specific data to determine whether to install a tip feature on a rotor blade of a wind turbine is disclosed. The method generally includes monitoring with a sensor at least one wind condition at a wind turbine site, determining an actual tip deflection threshold for a rotor blade of a wind turbine located at the wind turbine site based on the least one wind condition, comparing the actual tip deflection threshold to a predetermined tip deflection threshold for the rotor blade and determining whether to install a tip feature on the rotor blade based on the comparison between the actual tip deflection threshold and the predetermined tip deflection threshold.
摘要:
A wind turbine system is presented. The wind turbine system includes a blade comprising an airfoil and a sensing device disposed on a surface of the airfoil, wherein the sensing device generates signals that are representative of pressure deflection on the surface of the airfoil. The wind turbine system further comprises a processing subsystem that receives location details of the sensing device and a transfer function corresponding to the airfoil, determines a location of a stagnation point on the surface of the airfoil based upon the signals and the location details, and determine an angle of attack (AOA) on the surface of the airfoil based upon the location of the stagnation point and the transfer function.
摘要:
In one aspect, a winglet for a rotor blade is disclosed. The winglet may generally include a winglet body extending at least partially between a winglet origin and a blade tip. The winglet body may define a sweep and a pre-bend. The sweep defined between the winglet origin and the blade tip may range from about 0.5% to about 4.0% of a span of the rotor blade. The pre-bend defined between the winglet origin and the blade tip may range from about 1.5% to about 4.5% of the span of the rotor blade.