摘要:
In a rotatable anode (4) of an X-ray tube, a heat transfer between the rotating disc of the anode (4a) and the second bearing element (11) is achieved by providing a contact material (14) within a gap (16a, b) between the anode disc (4a) and the second bearing element (11). Contact elements (15) protrude from the second bearing element (11) into the contact material (14), thus allowing a heat transfer from anode disc (4a) to second bearing element (11) via contact material (14) and contact element (15).
摘要:
In a rotatable anode (4) of an X-ray tube, a heat transfer between the rotating disc of the anode (4a) and the second bearing element (11) is achieved by providing a contact material (14) within a gap (16a, b) between the anode disc (4a) and the second bearing element (11). Contact elements (15) protrude from the second bearing element (11) into the contact material (14), thus allowing a heat transfer from anode disc (4a) to second bearing element (11) via contact material (14) and contact element (15).
摘要:
This invention relates to high power X-ray sources, in particular to those equipped with a rotating X-ray anode capable of delivering a higher short time peak power than conventional rotating x-ray anodes. This invention can overcome the thermal limitation of peak power by allowing fast rotation of the anode and by introducing a lightweight material with high thermal conductivity in the region adjacent to the focal track material. The fast rotation can be provided by using sections of the rotating anode disk made of anisotropic high specific strength materials with high thermal stability that can be specifically adapted to the high stresses of anode operation. Uses include high speed image acquisition for X-ray imaging, for example, of moving objects in real-time such as in medical radiography.
摘要:
An X-ray tube with a rotatable anode for generating X-rays and an X-ray apparatus and a method for balancing the rotary anode of an X-ray tube include balancing of the rotary anode applicable to an anode mounted inside an X-ray tube. The rotatable anode includes an anode disc fixedly mounted to a rotatably driven support body, which is rotatably supported by a bearing arrangement. The anode includes at least one balancing cavity to adjust the center of gravity of the anode. The balancing cavity is partly filled with a balancing material being solid at operating temperature of the X-ray tube and liquid at a higher temperature. The balancing method includes determining an imbalance of the anode; heating liquefy balancing material; dislocating the balancing material inside the balancing cavity to compensate the imbalance; and cooling to solidify the balancing material.
摘要:
The invention describes an X-ray tube for generating X-radiation, wherein the tube comprises a rotary structure, which comprises a rotating anode, a stationary structure for rotatably supporting the rotary structure, a hydrodynamic bearing, which is arranged between the rotary structure and the stationary structure, wherein the bearing comprises a gap between the rotary structure and the stationary structure, means for stabilising the dimensions of the gap with respect to distortions because of thermo-mechanical causes. A further aspect, which is described, is a method for manufacturing the tube according to the invention, wherein means for stabilising the dimensions of the gap are arranged. It is also described an X-ray system for diagnostic use comprising the tube according to the invention, wherein the X-ray system is adapted to stabilise the dimensions of the gap. Another aspect of the specification is a method for manufacturing the X-ray system.
摘要:
An X-ray tube for generating X-radiation includes a rotary structure having a rotating anode, a stationary structure for rotatably supporting the rotary structure, and a hydrodynamic bearing which is arranged between the rotary structure and the stationary structure. The bearing includes a gap between the rotary structure and the stationary structure, a stabilizer configured to stabilize dimensions of the gap with respect to distortions because of thermo-mechanical causes.
摘要:
The invention relates to an X-ray tube (12) with a rotatable anode (30) for generating X-rays and an X-ray apparatus (10) with such an X-ray tube and a method for balancing a rotary anode of an X-ray tube. In order to provide a balancing of the rotary anode applicable to an anode mounted inside an X-ray tube, an X-ray tube with a rotatable anode (30) for generating X-rays is provided, wherein the anode comprises an anode disc (32) fixedly mounted to a rotatably driven support body (44, 46), which support body is rotatably supported by a bearing arrangement (34). The anode comprises at least one balancing cavity (70) to adjust the center of gravity of the anode, which balancing cavity (70) is partly filled with a balancing material (72) being solid at operating temperature of the X-ray tube and liquid at a higher temperature. Further, a method for balancing a rotary anode of an X-ray tube is provided, comprising the following steps: a) determining an imbalance of the anode; b) heating up a balancing material which is arranged inside at least one balancing cavity, which balancing material is solid at operating temperature of the X-ray tube and liquid at a higher temperature, such that the balancing material becomes liquid; c) dislocating at least a part of the balancing material inside the balancing cavity such that the imbalance of the anode is at least partially compensated; and d) cooling the balancing material, such that the balancing material becomes solid.
摘要:
The invention relates to a device for generating X-rays (41). The device comprises a source (5) for generating an electron beam (35), and a carrier (7) which is rotatable about an axis of rotation (15) and which is provided with a material (9) which generates the X-rays as a result of the incidence of the electron beam thereon. The device further comprises a heat absorbing member (45) which is arranged between the source and the carrier to catch electrons, which are scattered back from an impingement position (39) of the electron beam on the carrier, and to absorb a portion of the radiant heat generated by the carrier when heated during operation. The heat absorbing member is in thermal connection with a cooling system (51) of the device. According to the invention, the thermal connection between the heat absorbing member (45) and the cooling system (51) comprises a thermal barrier (57) which limits a rate of heat transfer (( ) occurring via the thermal connection per unit of temperature difference between the heat absorbing member and the cooling system. In a particular embodiment, said thermal barrier comprises an annular mounting member (57) having a limited dimension (hB), by means of which the heat absorbing member is mounted in the device. As a result of said thermal barrier, the heat absorbed by the heat absorbing member is gradually transferred to the cooling system, so that thermal peak loads on the cooling system and problems like boiling of the cooling liquid are avoided. In addition, relatively high temperatures of the heat absorbing member are allowed, so that the mass and volume of the heat absorbing member, which are necessary to provide the heat absorbing member with a sufficiently large heat absorbing capacity, are considerably reduced.
摘要:
An anode plate for an X-ray tube includes an outer edge, a center region, and a plurality of slots disposed along the outer edge and extending toward the center region (210b) with each of the plurality of slots including a slot end. The anode plate further includes slot termination material disposed around a least a portion of the periphery of one or more of the slot ends, the slot termination material operable to reduce the tension stress or compression stress at the slot end.
摘要:
The invention relates to a device for generating X-rays (69) comprising a source (5) for emitting electrons and a carrier (7) which is provided with a material (9) which generates X-rays as a result of the incidence of electrons. The device comprises a dynamic groove bearing (17) having an internal bearing member (23) and an external bearing member (21) by means of which the carrier is journalled so as to be rotatable about an axis of rotation (15). A first one (21) of the bearing members is connected to the carrier. A bearing gap (57, 59, 61) containing a liquid lubricant is present between the bearing members. The bearing gap forms part of a heat transfer path via which the heat, which is generated during operation as a result of the electrons impinging upon the X-ray generating material, is conducted from the carrier to the surroundings of the device. To improve the rate of heat transfer via said heat transfer path, the carrier (7) and at least a portion (33, 37) of said first bearing member (21), which portion at least partially covers the bearing gap (57, 59, 61), constitute an integral part of the device. Preferably, the carrier and said portion of the first bearing member are manufactured from a single piece of material. In this manner the heat transfer path does not include any material separations between the carrier and the part of the bearing gap covered by said portion of the first bearing member.