Abstract:
In a process variable transmitter, a sensor signal is sampled, using a clock signal, at a sensor sampling frequency. Interference is also sampled at the sensor sampling frequency. A comparison is made to determine whether the interference at the sensor sampling frequency or harmonics of the sensor sampling frequency exceed a threshold level. If so, the clock signal is changed to adjust the sensor sampling frequency away from the frequency of the interference.
Abstract:
In a process variable transmitter, a sensor signal is sampled, using a clock signal, at a sensor sampling frequency. Interference is also sampled at the sensor sampling frequency. A comparison is made to determine whether the interference at the sensor sampling frequency or harmonics of the sensor sampling frequency exceed a threshold level. If so, the clock signal is changed to adjust the sensor sampling frequency away from the frequency of the interference.
Abstract:
An industrial process differential pressure sensing device includes a housing having first and second isolation cavities that are respectively sealed by first and second diaphragms, a differential pressure sensor, a static pressure sensor, an eddy current displacement sensor, and a controller. The static pressure sensor is configured to output a static pressure signal that is based on a pressure of fill fluid in the first isolation cavity. The differential pressure sensor is configured to output a differential pressure signal that is indicative a pressure difference between the first and second isolation cavities. The eddy current displacement sensor is configured to output a position signal that is indicative of a position of the first isolation diaphragm relative to the housing. The controller is configured to detect a loss of a seal of the isolation cavity based on the position signal, the static pressure signal and the differential pressure signal.
Abstract:
A field device includes a housing that contains field device circuitry, a display coupled to the field device circuitry and viewable through the housing, and a movable control positioned around the housing, the movable control including a magnet. The field device further includes a sensing element disposed within the housing and configured to detect movement of the magnet. In addition, the field device includes a processor coupled to the display and the sensing element. The processor is configured to identify a position of the movable control, based on the detected movement of the magnet, and control a user interface on the display, based on the identified position of the movable control.
Abstract:
An industrial process differential pressure sensing device includes a housing having first and second isolation cavities that are respectively sealed by first and second diaphragms, a differential pressure sensor, a static pressure sensor, an eddy current displacement sensor, and a controller. The static pressure sensor is configured to output a static pressure signal that is based on a pressure of fill fluid in the first isolation cavity. The differential pressure sensor is configured to output a differential pressure signal that is indicative a pressure difference between the first and second isolation cavities. The eddy current displacement sensor is configured to output a position signal that is indicative of a position of the first isolation diaphragm relative to the housing. The controller is configured to detect a loss of a seal of the isolation cavity based on the position signal, the static pressure signal and the differential pressure signal.
Abstract:
A field device includes a housing that contains field device circuitry, a display coupled to the field device circuitry and viewable through the housing, and a movable control positioned around the housing, the movable control including a magnet. The field device further includes a sensing element disposed within the housing and configured to detect movement of the magnet. In addition, the field device includes a processor coupled to the display and the sensing element. The processor is configured to identify a position of the movable control, based on the detected movement of the magnet, and control a user interface on the display, based on the identified position of the movable control.
Abstract:
A process transmitter is configured to measure a process variable of an industrial process. The process transmitter includes a process variable sensor which senses the process variable and responsively provides a process variable sensor output. Sensor circuitry is coupled to the process variable sensor. A housing to encloses the sensor circuitry and the output circuitry. The sensor circuitry electrical couples to the housing. The sensor circuitry wirelessly communicates with the output circuitry.
Abstract:
A process transmitter is configured to measure a process variable of an industrial process. The process transmitter includes a process variable sensor which senses the process variable and responsively provides a process variable sensor output. Sensor circuitry is coupled to the process variable sensor. A housing to encloses the sensor circuitry and the output circuitry. The sensor circuitry electrical couples to the housing. The sensor circuitry wirelessly communicates with the output circuitry.