摘要:
A single pass ROS system provides a plurality of latent images which may subsequently be developed in different colors. The ROS units are initially aligned so that each color image is precisely registered at the same relative position along the exposed area of a photoreceptor belt. The alignment is accomplished by forming a pair of opposed alignment apertures in the surface of the belt and detecting coincidence or lack of coincidence of signals generated by the beginning and end of each scan line. The correction is enabled by rotating the output window in the ROS system, a transmissive optical component with no optical power, subsequent to the ROS, to create the required rotation of the projected scan line. Once the initial X and Y-axis alignments are complete, subsequent alignment is maintained through subsequent passes by checking the positions of the previously identified pixels as they advance past additional lead edge apertures formed in the process direction along the belt surface.
摘要:
The present invention is directed to a precise method of registering a plurality of ROS imagers, so as to form sequential registered images on a photoreceptor belt in a single pass. Pairs of belt holes are formed in the photoreceptor belt, outside the image area and outside of the scan width of the ROS imagers. A pair of light sources are incorporated into the post polygon optics of each ROS imager so as to produce a light spot at the photoreceptor surface which will periodically illuminate the holes on the belt. As the leading edge of the belt holes advances into the beams, detectors placed beneath the belt and beneath the exposure station provide signals representing the exposure level of the light source output. The position of a transmissive optical element with no optical power, subsequent to each of said ROS imagers, is adjusted in response to registration error signals generated by said photodetecting means to adjust the position of said scan lines. The detectors produce a current output representative of the exposure level. The current output is converted into page sync signals which are reproducible through each of the imaging stations to produce registration of the first scan line of each image sequence.
摘要:
A pulsed imaging Raster Output Scanner utilizes pulse width modulation in conjunction with asymmetric spatial filtering to prevent overshoot of the intensity and maintain precise intensity levels into the other exposure levels.
摘要:
A variable interlacing system for use in xerographic imaging. Variable interlacing provides automatic reconfiguration of imaging parameters in an electrostatic printing machine. Print speed, format and resolution of the printed material may be traded-off against each other dynamically and on demand without changing any of the hardware, including the Raster Output Scanner (ROS). The system and the method of use of the system involve multi-beam irradiative sources in the ROS.
摘要:
An optical scanning device is provided which comprises a laser array which emits laser beams including a number of beams (1, 2, . . . , n) writing a swath of rasters having a laser scanning section which, when an interlaced scanning period i, is set to a natural number between beams which are adjacent in a sub-scanning direction, scans the laser beams emitted from the laser array with the interlaced scanning period i. The laser scanning section can scan the laser beams such that the beam number n and the interlaced scanning period i are relatively prime natural numbers, and n>i. In a first scan, data for raster lines (1, 2, . . . , n) can be selectively associated with a respective first exposure. At a second scan, data for raster lines (i+1, i+2, . . . , n) can be selectively associated with a respective second exposure and data for raster lines (n+1, n+2, . . . , n+i) can be selectively associated with a respective first exposure. The first respective exposure for raster lines (i+1, i+2, . . . , n) is not equal to the respective second exposure for raster lines (i+1, i+2, . . . , n).
摘要:
An optical scanning device is provided which comprises a laser array which emits laser beams including a number of beams (1, 2, . . . , n) writing a swath of rasters having a laser scanning section which, when an interlaced scanning period i, is set to a natural number between beams which are adjacent in a sub-scanning direction, scans the laser beams emitted from the laser array with the interlaced scanning period i. The laser scanning section can scan the laser beams such that the beam number n and the interlaced scanning period i are relatively prime natural numbers, and n>i. In a first scan, data for raster lines (1, 2, . . . , n) can be selectively associated with a respective first exposure. At a second scan, data for raster lines (i+1, i+2, . . . n) can be selectively associated with a respective second exposure and data for raster lines (n+1, n+2, . . . , n+i) can be selectively associated with a respective first exposure. The first respective exposure for raster lines (i+1, i+2, . . . , n) is not equal to the respective second exposure for raster lines (i+1, i+2, . . . , n).
摘要:
A telecentric laser beam optical focusing system consists of two diffractive optical elements. The optical system has a spot size of less than one micron and a Strehl ratio of over 0.9 with a f/number of one and a total object/image field of 0.5 micron.
摘要:
There is disclosed a total reflection knife edge which is a transparent optical element for receiving a scanning light beam and allowing the light beam at certain locations to enter a fiber optic element or blocking the light beam at certain locations from entering the fiber optic element. The total reflection knife edge of this invention comprises a convex surface to focus the scanning light beam on a surface which is substantially perpendicular to the propagation direction of the scanning light beam. This surface allows the scanning light beam to exit the total internal reflection knife edge and enter the fiber optic element. The total reflection knife edge of this invention also has a surface which is at an angle to the propagation direction of the scanning light beam. The angled surface reflects the incoming scanning light beam back into the internal reflection knife edge to prevent the light beam from entering the fiber optic element.
摘要:
An optical scanning device is provided which comprises a laser array which emits laser beams including a number of beams (1, 2, . . . , n) writing a swath of rasters having a laser scanning section which, when an interlaced scanning period i, is set to a natural number between beams which are adjacent in a sub-scanning direction, scans the laser beams emitted from the laser array with the interlaced scanning period i. The laser scanning section can scan the laser beams such that the beam number n and the interlaced scanning period i are relatively prime natural numbers, and n>i. In a first scan, data for raster lines (1, 2, . . . , n) can be selectively associated with a respective first exposure. At a second scan, data for raster lines (i+1, i+2, . . . , n) can be selectively associated with a respective second exposure and data for raster lines (n+1, n+2, . . . , n+i) can be selectively associated with a respective first exposure. The first respective exposure for raster lines (i+1, i+2, . . . , n) is not equal to the respective second exposure for raster lines (i+1, i+2, . . . , n).
摘要:
A dual infrared beam raster scanning system has overfilled facets on the rotating polygon mirror and a double pass through a two cylindrical lens element f-theta lens group. The raster scanning system has an aspheric collimator lens, an aperture and a four lens element cylindrical lens group in the pre-polygon optics, and a two cylindrical lens element f-theta lens group and a cylindrical mirror and a cylindrical wobble correction mirror in the post-polygon mirror optics.