摘要:
A light transmitting substrate having at least a light receiving surface, a first electrode located on the light transmitting substrate, a collector electrode located on at least a part of the first electrode and formed from a metal thin film, a photoelectric conversion portion located on an upper surface of the first electrode or the collector electrode, carrying a photosensitizer, and immersed in a carrier transport material, an insulating frame portion surrounding sides of the photoelectric conversion portion, and a second electrode located to be opposed to the first electrode above the photoelectric conversion portion are provided. Relation of Isc×Rh
摘要:
A photoelectric conversion device according to the present invention includes a transparent or translucent substrate and a supporting substrate both fixed in place with a sealant. The photoelectric conversion device further includes a transparent electrically conductive layer disposed on the transparent or translucent substrate, a photoelectric conversion layer disposed on the transparent electrically conductive layer a counter electrically conductive layer in contact with or separated from the supporting substrate, a terminal electrode on the photoelectric conversion layer side electrically connected to the transparent electrically conductive layer, and a counter terminal electrode electrically connected to the counter electrically conductive layer. The transparent electrically conductive layer, the photoelectric conversion layer, and the counter electrically conductive layer contain a carrier transport material.
摘要:
A light transmitting substrate having at least a light receiving surface, a first electrode located on the light transmitting substrate, a collector electrode located on at least a part of the first electrode and formed from a metal thin film, a photoelectric conversion portion located on an upper surface of the first electrode or the collector electrode, carrying a photosensitizer, and immersed in a carrier transport material, an insulating frame portion surrounding sides of the photoelectric conversion portion, and a second electrode located to be opposed to the first electrode above the photoelectric conversion portion are provided. Relation of Isc×Rh
摘要:
Provided are a dye-sensitized solar cell wherein a counter electrode composed of a stable counter electrode conductive layer and a catalyst layer is formed on a porous insulation layer, and a dye-sensitized solar cell module wherein the dye-sensitized solar cell is utilized. A dye-sensitized solar cell includes a supporting body made of a light-transmissive material, and a laminate wherein a conductive layer, a photoelectric conversion layer having a porous semiconductor layer with a dye adsorbed therein, a porous insulation layer, a counter electrode conductive layer, and a catalyst layer are laminated in the order presented. The photoelectric conversion layer and the porous insulation lay are filled with a carrier transport material.
摘要:
A solar cell includes a light transmissive substrate, a supporting substrate, a photoelectric conversion part and a counter electrode disposed between the light transmissive substrate and the supporting substrate in such a manner that they are spaced from each other; an electrolyte part disposed between the light transmissive substrate and the supporting substrate while being in contact with the photoelectric conversion part and the counter electrode, and a sealing part that surrounds and seals the electrolyte part in such a manner that the electrolyte part is retained within an electrolyte disposition region. First openings that make the electrolyte part communicate with the outside are provided at least in one end part in the electrolyte disposition region, and at least one second opening that makes the electrolyte part communicate with the outside is provided in the middle part in the electrolyte disposition region. The first and second openings are sealed.
摘要:
Disclosed are a dye-sensitized solar cell and a dye-sensitized solar cell module that suppress a decrease in photoelectric conversion efficiency caused by dye adsorption to an insulation layer. The dye-sensitized solar cell is characterized by having a stacked structure wherein an electroconductive layer, a photoelectric conversion layer formed of a porous semiconductor layer into which a dye is absorbed, a porous insulation layer, a catalyst layer, and a counter-electrode electroconductive layer are stacked in this order on a light-transmissive support body, with an insulation cover part that is comprised of a material which differs from that of the porous insulation layer formed on at least a part of or on all of the surface of the porous insulation layer.
摘要:
Provided are a dye-sensitized solar cell wherein a counter electrode composed of a stable counter electrode conductive layer and a catalyst layer is formed on a porous insulation layer, and a dye-sensitized solar cell module wherein the dye-sensitized solar cell is utilized. A dye-sensitized solar cell includes a supporting body made of a light-transmissive material, and a laminate wherein a conductive layer, a photoelectric conversion layer having a porous semiconductor layer with a dye adsorbed therein, a porous insulation layer, a counter electrode conductive layer, and a catalyst layer are laminated in the order presented. The photoelectric conversion layer and the porous insulation lay are filled with a carrier transport material.
摘要:
The present invention provides a dye-sensitized solar cell including: a transparent electrode; a counter electrode; a porous semiconductor layer having a dye sensitizer adsorbed therein; and a carrier transport layer containing an electrolytic solution therein, the porous semiconductor layer and the carrier transport layer being located between the transparent electrode and the counter electrode, wherein the electrolytic solution contains a heterocyclic compound comprising a heteroatom in the ring.
摘要:
There are provided a photoelectric conversion element and a photoelectric conversion element module including the photoelectric conversion element, the photoelectric conversion element including a transparent substrate, a transparent conductive layer arranged on the transparent substrate, a photoelectric conversion layer arranged on the transparent conductive layer, a porous insulating layer arranged in contact with the photoelectric conversion layer, a reflective layer arranged in contact with the porous insulating layer, and a catalyst layer and a counter conductive layer that are arranged on the reflective layer, in which the photoelectric conversion layer contains a porous semiconductor, a carrier-transport material, and a photosensitizer, and in which the area of the orthogonal projection of the porous insulating layer onto the transparent substrate and the area of the orthogonal projection of the reflective layer onto the transparent substrate are each larger than the area of the orthogonal projection of the photoelectric conversion layer onto the transparent substrate.
摘要:
There are provided a photoelectric conversion element and a photoelectric conversion element module including the photoelectric conversion element, the photoelectric conversion element including a transparent substrate, a transparent conductive layer arranged on the transparent substrate, a photoelectric conversion layer arranged on the transparent conductive layer, a porous insulating layer arranged in contact with the photoelectric conversion layer, a reflective layer arranged in contact with the porous insulating layer, and a catalyst layer and a counter conductive layer that are arranged on the reflective layer, in which the photoelectric conversion layer contains a porous semiconductor, a carrier-transport material, and a photosensitizer, and in which the area of the orthogonal projection of the porous insulating layer onto the transparent substrate and the area of the orthogonal projection of the reflective layer onto the transparent substrate are each larger than the area of the orthogonal projection of the photoelectric conversion layer onto the transparent substrate.