摘要:
A driving electrolyte containing a solvent, a solute containing the following compounds represented by General Formulae (1) and (2) prepared by synthesis, and a nitro compound, (wherein, each of R1 and R2 is independently an alkyl group; each of M1 and M2 is a functional group selected from the group consisting of a hydrogen atom, an ammonium group and an amine group; and n is an integer of 0 to 14), (wherein, R3 is an alkyl group; R4 is a functional group selected from the group consisting of a hydrogen atom, a methyl group and an ethyl group; M3 is a functional group selected from the group consisting of a hydrogen atom, an ammonium group and an amine group; and m is an integer of 0 to 14).
摘要翻译:含有溶剂的驱动电解质,含有通过合成制备的通式(1)和(2)表示的以下化合物的溶质和硝基化合物,(其中,R 1,R 2, SUP> 2独立地是烷基; M 1和M 2中的每一个是选自氢原子,铵, 基团和胺基; n为0〜14的整数),(其中,R 3为烷基; R 4为选自以下的官能团: 由氢原子,甲基和乙基组成的基团; M 3是选自氢原子,铵基和胺基的官能团; m是 0〜14的整数)。
摘要:
An electrolytic capacitor including a positive foil, a negative foil and an intervening separator which contains a polymeric electrolyte composite. The polymeric electrolyte composite contains electrolyte in the matrix of copolymeric acrylic ester. The separator contains at least either one of rayon fiber and cotton linter. Or, other separator takes the form of several overlaid sheets, each of the sheet being made of a cellulose fiber. The above-configured electrolytic capacitors have the advantages of high withstanding voltage, high heat resisting property and long life.
摘要:
An aluminum electrolytic capacitor produced by winding an anode foil 11 and a cathode foil 12 via a separator 13 impregnated with a driving electrolyte solution 14, wherein the driving electrolyte solution 14 comprises a polar solvent, at least one electrolyte selected from inorganic acids, organic acids, inorganic acid salts, and organic acid salts, and a random copolymer of polyoxyethylene and polyoxypropylene having a hydroxy group at one end and a hydrogen group at the other end and the separator 13 is formed by overlaying a cellulosic fiber-mixed paper, a cellulosic fiber paper, and a cotton linter. The present invention provides a long-lasting driving electrolyte solution higher in electric conductivity and superior in the chemical self-restoring ability and heat resistance at high temperature, and an aluminum electrolytic capacitor using the same.
摘要:
An aluminum electrolytic capacitor produced by winding an anode foil 11 and a cathode foil 12 via a separator 13 impregnated with a driving electrolyte solution 14, wherein the driving electrolyte solution 14 comprises a polar solvent, at least one electrolyte selected from inorganic acids, organic acids, inorganic acid salts, and organic acid salts, and a random copolymer of polyoxyethylene and polyoxypropylene having a hydroxy group at one end and a hydrogen group at the other end and the separator 13 is formed by overlaying a cellulosic fiber-mixed paper, a cellulosic fiber paper, and a cotton linter. The present invention provides a long-lasting driving electrolyte solution higher in electric conductivity and superior in the chemical self-restoring ability and heat resistance at high temperature, and an aluminum electrolytic capacitor using the same.
摘要:
An electrolytic solution for an electrolytic capacitor includes a solvent and an electrolyte dissolved in the solvent. This electrolyte includes at least one of a carboxylic acid and a salt of the carboxylic acid. The carboxylic acid has a carboxyl group and at least one or more of substituents bonded to each terminal carbon of a straight main chain. The substituent bonded to the each terminal carbon of the main chain is hydrophilic, and/or a hydrophilic substituent is bonded to at least one of carbons other than the both terminal carbons of the main chain.
摘要:
An electrolytic solution for an electrolytic capacitor includes a solvent and an electrolyte dissolved in the solvent. This electrolyte includes at least one of a carboxylic acid and a salt of the carboxylic acid. The carboxylic acid has a carboxyl group and at least one or more of substituents bonded to each terminal carbon of a straight main chain. The substituent bonded to the each terminal carbon of the main chain is hydrophilic, and/or a hydrophilic substituent is bonded to at least one of carbons other than the both terminal carbons of the main chain.