摘要:
A magnetic storage medium includes a seed layer made of non-magnetic and amorphous Co—Cr—W, an intermediate layer having a crystalline structure, which is made of a non-magnetic material on the seed layer and has a c-axis oriented in a thickness direction of the seed layer in a hexagonal close-packed structure, and a recording layer made of mainly a magnetic material on the intermediate layer and having information magnetically recorded therein.
摘要:
The perpendicular magnetic recording medium includes a non-magnetic underlayer composed of Ru or an Ru alloy having a columnar structure in which crystalline particles are isolated from each other by a space, a non-magnetic granular layer provided on the non-magnetic underlayer and composed of crystalline particles and a non-soluble phase and a granular magnetic layer provided on the non-magnetic granular layer and composed of CoCrPt alloy crystalline particles and the non-soluble phase, wherein when a lattice constant in an in-plane direction of the non-magnetic underlayer is a1, the lattice constant in the in-plane direction of the non-magnetic granular layer is a2, and the lattice constant in the in-plane direction of the granular magnetic layer is a3, the relation a1>a2>a3 is satisfied.
摘要:
The magnetic recording medium comprises a backing layer including a first magnetic layer, a second magnetic layer which is formed over the first magnetic layer, is ferrimagnetic and is magnetized in a direction opposite to the first magnetic layer, and a third magnetic layer formed over the second magnetic layer and magnetized in a direction opposite to the second magnetic layer; and a perpendicular magnetic recording layer for recording magnetic information formed over the backing layer. Antiferromagnetic exchange interconnection is formed between the first magnetic layer and the second magnetic layer and between the second magnetic layer and the third magnetic layer.
摘要:
A perpendicular magnetic recording medium at least comprises a perpendicular magnetic recording layer and a backing layer backing the perpendicular magnetic recording layer. The backing layer has an in-plane magnetization and is formed of a ferrimagnetic material having a compensation temperature in the vicinity of a recording/reproducing temperature in which reproducing of magnetic information is made from the perpendicular magnetic recording layer. A magnetic storage apparatus for recording and reproducing magnetic information using the perpendicular magnetic recording medium is also disclosed.
摘要:
A perpendicular magnetic recording medium at least comprises a perpendicular magnetic recording layer and a backing layer backing the perpendicular magnetic recording layer. The backing layer has an in-plane magnetization and is formed of a ferrimagnetic material having a compensation temperature in the vicinity of a recording/reproducing temperature in which reproducing of magnetic information is made from the perpendicular magnetic recording layer. A magnetic storage apparatus for recording and reproducing magnetic information using the perpendicular magnetic recording medium is also disclosed.
摘要:
A magnetic recording medium includes; a base member; an underlayer formed on the base member; a main recording layer formed on the underlayer, and a writing assist layer formed on or under the main recording layer in contact with the main recording layer. The main recording layer has perpendicular magnetic anisotropy with an anisotropic magnetic field of Hk1 and an inclination of a reversal part of a magnetization curve of a1. The writing assist layer has an anisotropic magnetic field of Hk2 and an inclination of a reversal part of a magnetization curve of a2. The anisotropic magnetic fields Hk1 and Hk2 and the inclinations a1 and a2 satisfy Hk1>Hk2 and a2>a1.
摘要:
A perpendicular magnetic recording medium at least comprises a perpendicular magnetic recording layer and a backing layer backing the perpendicular magnetic recording layer. The backing layer has an in-plane magnetization and is formed of a ferrimagnetic material having a compensation temperature in the vicinity of a recording/reproducing temperature in which reproducing of magnetic information is made from the perpendicular magnetic recording layer. A magnetic storage apparatus for recording and reproducing magnetic information using the perpendicular magnetic recording medium is also disclosed.
摘要:
According to the present invention, there is provided a magnetic recording medium 10 which includes: a non-magnetic base 1; a non-magnetic underlayer 3 formed on the non-magnetic base 1; a first recording layer 4 formed on the non-magnetic underlayer 3, the first recording layer 4 having a perpendicular magnetic anisotropy with an anisotropic magnetic field of Hk1, a thickness of t1, and a saturation magnetization of Ms1; and a second recording layer 5 formed above or under the first recording layer 4, the second recording layer 5 having a perpendicular magnetic anisotropy with an anisotropic magnetic field of Hk2, a thickness of t2, and a saturation magnetization of Ms2, wherein the anisotropic magnetic fields Hk1 and Hk2, the thicknesses t1 and t2, and the saturation magnetizations Ms1 and Ms2 satisfy Hk2
摘要:
A magnetic recording medium includes; a base member; an underlayer formed on the base member; a main recording layer formed on the underlayer, and a writing assist layer formed on or under the main recording layer in contact with the main recording layer. The main recording layer has perpendicular magnetic anisotropy with an anisotropic magnetic field of Hk1 and an inclination of a reversal part of a magnetization curve of a1. The writing assist layer has an anisotropic magnetic field of Hk2 and an inclination of a reversal part of a magnetization curve of a2. The anisotropic magnetic fields Hk1 and Hk2 and the inclinations a1 and a2 satisfy Hk1>Hk2 ∞0 and a1>a2.
摘要:
A perpendicular magnetic recording medium includes a nonmagnetic seed layer, a nonmagnetic intermediate layer provided on the nonmagnetic seed layer, and a perpendicular recording layer provided on the nonmagnetic intermediate layer. The nonmagnetic seed layer includes a first seed layer made of an amorphous material, and a second seed layer provided between the first seed layer and the nonmagnetic intermediate layer and made of a material having a fcc structure. The amorphous material includes at least one element selected from a group consisting of Ta, W, Nb, Mo, Zr and alloys thereof which include at least one of Ta, W, Nb, Mo and Zr as a main component exceeding 50 at. %.