Abstract:
A recording medium having improved signal-to-noise ratio (SNR) capabilities includes dual cap layers over the recording layer, where the Curie temperature of the first cap layer over the recording layer is greater than the Curie temperature of the recording layer, and the Curie temperature of the second cap layer over the first cap layer is greater than the Curie temperature of the first cap layer. The first cap layer may be composed of a magnetically hard material, such as L10 CoPt, where the second cap layer may be composed of a magnetically soft material, such as Co. Such a medium is particularly useful in the context of heat-assisted magnetic recording (HAMR).
Abstract:
The purpose of the present invention is to provide a magnetic recording medium making secondary growth of magnetic crystal grains inhibited, having a magnetic recording layer having a large film thickness, and exhibiting excellent magnetic characteristics, and to provide a method for producing the medium. A magnetic recording medium according to the present invention includes a substrate and a magnetic recording layer that includes a lower layer and an upper layer, in which the lower layer and the upper layer include magnetic crystal grains formed of an ordered alloy and non-magnetic grain boundaries, the lower layer is formed by depositing Bi, C and an element constituting the ordered alloy, and the upper layer is formed by depositing C and an element constituting the ordered alloy. The present invention also provides a method for producing the above-described magnetic recording medium.
Abstract:
A magnetic media having a lateral exchange control layer formed on a magnetic oxide layer of a magnetic recording layer. A cap layer is formed over the lateral exchange control layer. The lateral exchange control layer can be an alloy comprising Co and one or more of W, Ru, Hf, Ta, Nb and Fe. The lateral exchange control layer has the highest magnetic saturation moment among all the recording layers, and increases spacing between magnetic grains (e.g. increased non-magnetic boundary width), thereby reducing lateral exchange sigma. The presence of lateral exchange control increases signal to noise ratio and reduces bit error rate and increases areal density.
Abstract:
A method for manufacturing a magnetic recording medium including at least a non-magnetic substrate, a soft magnetic underlayer, an orientation control layer that controls an orientation of an immediate upper layer, and a perpendicular magnetic layer in which a magnetization easy axis is mainly perpendicularly oriented with respect to the non-magnetic substrate so as to be laminated one another on the non-magnetic substrate. The perpendicular magnetic layer includes two or more magnetic layers, and each layer is subjected to a crystal growth such that each crystal grain composing each magnetic layer forms a columnar crystal continuous in a thickness direction together with the crystal grains composing the orientation control layer. The orientation control layer, formed of a Co—Cr alloy, is formed by the reactive sputtering using a mixture of a sputtering gas and nitrogen.
Abstract:
A thermally-assisted magnetic recording medium or a microwave-assisted magnetic recording medium includes: an orientation control layer (104) that is formed on a substrate (101); an underlayer (10) that is formed on the orientation control layer (104); and a magnetic layer (108) that is formed on the underlayer (10) and contains an alloy having an L10 type crystal structure as a main component, in which the underlayer (10) includes an MgO underlayer (107) that contains MgO and has a (100) orientation and a nitride underlayer (106) that contains at least one nitride selected from the group consisting of TaN, NbN, and HfN and has a (100) orientation.
Abstract:
There is provided a soft magnetic alloy for a perpendicular magnetic recording medium having a low coercive force, high amorphous properties, high corrosion resistance, and a high hardness; and a sputtering target for producing a thin film of the alloy. The alloy comprises in at. %: 6 to 20% in total of one or two of Zr and Hf; 1 to 20% of B; and 0 to 7% in total of one or two or more of Ti, V, Nb, Ta, Cr, Mo, W, Ni, Al, Si, and P; and the balance Co and/or Fe and unavoidable impurities. The alloy further satisfies 6≦2×(Zr%+Hf%)−B%≦16 and 0≦Fe%/(Fe%+Co%)
Abstract:
According to the present invention, a magnetic recording medium is provided including a disk-shaped non-magnetic substrate and at least a perpendicular magnetic layer formed on the disk-shaped non-magnetic substrate, wherein the perpendicular magnetic layer has a structure in which an FePt or CoPt nanoparticle array is formed on a formation surface, on which a plurality of striations each having a circumferential directional component are formed, by a texturing treatment; a manufacturing method thereof; and a magnetic record/reproduction apparatus including the magnetic recording medium or a magnetic recording medium manufactured according to the manufacturing method.
Abstract:
A metallic magnetic powder where a primary particle of each metallic magnetic particle is a powder without forming an aggregate, and a method of making the same that includes manufacturing a metallic magnetic powder constituted of metallic magnetic particles, containing a metallic magnetic phase, with Fe, or Fe and Co as main components, rare earth elements, or yttrium and one or more non-magnetic components removing the non-magnetic component from the metallic magnetic with a reducing agent, while making a complexing agent exist for forming a complex with the non-magnetic component in water; oxidizing the metallic magnetic particle with the non-magnetic component removed; substituting water adhered to the oxidized metallic magnetic particle with an organic solvent; andcoating the surface of the metallic magnetic particle with an organic matter different from the organic solvent, while maintaining a wet condition of the metallic magnetic particle with the organic solvent adhered thereto.
Abstract:
A perpendicular magnetic recording medium, which includes a nonmagnetic substrate, and a first underlayer in the form of a soft magnetic under-layer (SUL), a second underlayer, an intermediate layer, a magnetic recording layer, a protective layer, and a lubricant layer sequentially laminated on the nonmagnetic substrate. The SUL has a plurality of SUL layers including a type-A SUL layer, a plurality of type-B SUL layers including at least two adjacent type-B SUL layers, and a nonmagnetic metal spacer layer disposed between the two adjacent type-B SUL layers. The type-A SUL layer may include a material selected from Co, Fe and Ni, a material selected from Cr, V and Ti, and a material selected from W, Zr, Ta and Nb. Each of the type-B SUL layers is in antiferromagnetic coupling, and may include a material selected from Co, Fe and Ni, a material selected from Cr, V and Ti, and a material selected from W, Zr, Ta and Nb.
Abstract:
According to one embodiment, a magnetic recording medium includes a magnetic recording layer formed on a substrate and including magnetic grains and a grain boundary formed between the magnetic grains, the grain boundary includes a first grain boundary having a first thermal conductivity, and a second grain boundary formed on the first grain boundary and having a second thermal conductivity different from the first thermal conductivity, and at least one of the first and second grain boundaries suppresses thermal conduction.