Abstract:
Disclosed are platable resin compositions for use in, for example, metal plating of plastics. The resin compositions include polycarbonate, acrylonitrile butadiene styrene and a filler, and may exclude a laser direct structuring additive. The compositions possess markedly improved characteristics, such as notched IZOD impact, flex modulus, and peel strength. Also disclosed are methods for plating metal on a substrate that is formed from the present resin compositions, as well as articles that include the disclosed compositions.
Abstract:
Disclosed herein are blended thermoplastic compositions comprising at least one polycarbonate component, at least one impact modifier, at least one mineral filler, and at least one flame retardant. The resulting compositions can be used in the manufacture of articles requiring materials with high modulus, ultra-high ductility, good flow, thin wall flame retardancy and good thermal resistance. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Abstract:
The disclosure concerns blended thermoplastic compositions comprising (a) from about 50 wt % to about 80 wt % of a polycarbonate component; (b) from greater than 0 wt % to about 12 wt % of an impact modifier component; (c) from about 10 wt % to about 40 wt % of a filler; and (d) from about 5 wt % to about 15 wt % of a flame retardant component comprising an oligomeric phosphate ester, wherein the oligomeric phosphate ester is a free flowing powder at 23° C.; wherein the blended thermoplastic composition has a ductility of 100% at 10° C. when measured by a Notched Izod Impact test performed according to ASTM D256; wherein the combined weight percent value of all components does not exceed 100 wt %; and wherein all weight percent values are based on the total weight of the composition.
Abstract:
A polymer composition includes: about 20 wt % to about 80 wt % of a polycarbonate polymer; about 1 wt % to about 20 wt % of a polycarbonate-siloxane copolymer; about 15 wt % to about 35 wt % of a reinforcing filler having a tensile modulus of at least about 150 GPa; and about 4 wt % to about 20 wt % of a flame retardant comprising phosphorous. The polymer composition demonstrates a flexural modulus in an amount equal to or greater than about 10 GPa. Methods of forming a polymer composition and blended thermoplastic compositions are also described.